
WLAN System Toolbox™
Reference

R2018a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

WLAN System Toolbox™ Reference
© COPYRIGHT 2015–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
October 2015 Online only New for Version 1.0 (R2015b)
March 2016 Online only Revised for Version 1.1 (Release 2016a)
September 2016 Online only Revised for Version 1.2 (Release 2016b)
March 2017 Online only Revised for Version 1.3 (Release 2017a)
September 2017 Online only Revised for Version 1.4 (Release 2017b)
March 2018 Online only Revised for Version 1.5 (Release 2018a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Functions — Alphabetical List
1

Classes — Alphabetical List
2

Classes — Alphabetical List
3

iii

Contents

Functions — Alphabetical List

1

wlanBCCDecode
Convolutionally decode input data

Syntax
y = wlanBCCDecode(sym,rate)
y = wlanBCCDecode(sym,rate,decType)
y = wlanBCCDecode(sym,rate,tDepth)
y = wlanBCCDecode(sym,rate,decType,tDepth)

Description
y = wlanBCCDecode(sym,rate) convolutionally decodes the input sym using a binary
convolutional code (BCC) at the specified rate. The BCC is defined in IEEE®
802.11™-2012 Sections 18.3.5.6 and 20.3.11.6.

y = wlanBCCDecode(sym,rate,decType) specifies the decoding type of the Viterbi
decoding algorithm.

y = wlanBCCDecode(sym,rate,tDepth) specifies the traceback depth of the Viterbi
decoding algorithm.

y = wlanBCCDecode(sym,rate,decType,tDepth) speficies the decoding type and
the traceback depth. decType and tDepth can be placed in any order after rate.

Examples

BCC-Decode Two Encoded Streams

Decode two encoded streams of soft bits by using a BCC of rate 1/2.

Create the sequence of data bits.

dataBits = randi([0 1],100,1,'int8');

1 Functions — Alphabetical List

1-2

Parse the data bits as defined in IEEE® 802.11™-2012 Section 20.3.11.5 and IEEE®
802.11ac™-2013 Section 22.3.10.5.2. numES is the number of encoded streams.

numES = 2;
parsedData = reshape(dataBits,numES,[]).';

BCC-encode the parsed sequence.

encodedData = wlanBCCEncode(parsedData,'1/2');

Convert the encoded bits to soft bits (i.e. LLR demodulation).

demodData = double(1-2*encodedData);

BCC-decode the demodulated data.

decodedData = wlanBCCDecode(demodData,'1/2');

Deparse the decoded data.

deparsedData = reshape(decodedData.',[],1);

Verify that the decoded data matches the original data.

isequal(dataBits,deparsedData)

ans = logical
 1

BCC-Decode Soft Bits

Decode a sequence of soft bits by using a BCC of rate 3/4 and a traceback depth of 60.

Create the sequence of data bits.

dataBits = randi([0 1],300,1);

BCC-encode the sequence of bits.

encodedData = wlanBCCEncode(dataBits,3/4);

Convert the encoded bits to soft bits (i.e. LLR demodulation).

 wlanBCCDecode

1-3

demodData = 1-2*encodedData;

BCC-decode the demodulated bits.

tDepth = 60;
decodedData = wlanBCCDecode(demodData,3/4,tDepth);

Verify that the decoded data matches the original data.

isequal(dataBits,decodedData)

ans = logical
 1

BCC-Decode Hard Bits

Decode a sequence of hard bits by using a BCC of rate 3/4 and a traceback depth of 45.

Create the sequence of data bits.

dataBits = randi([0 1],300,1,'int8');

BCC-encode the sequence of bits.

encodedData = wlanBCCEncode(dataBits,'2/3');

Perform hard BCC decoding on the encoded bits. Specify a traceback depth 45.

tDepth = 45;
decodedBits = wlanBCCDecode(encodedData,'2/3','hard',tDepth);

Verify that the decoded bits match the original bits.

isequal(dataBits,decodedBits)

ans = logical
 1

1 Functions — Alphabetical List

1-4

Input Arguments
sym — Input sequence
matrix

Input sequence of symbols to decode, specified as a numeric matrix of integers. The
number of columns must be the number of encoded streams. Each stream is encoded
separately. When decType is 'soft' or not specified, sym must be a real matrix with log-
likelihood ratios. Positive values represent a logical 0 and negative values represent a
logical 1.
Data Types: double | int8

rate — Code rate
1/2 | 2/3 | 3/4 | 5/6

Code rate of the binary convolutional code (BCC), specified as a scalar, character array, or
string scalar. rate must be a numeric value equal to 1/2, 2/3, 3/4, or 5/6, or a character
vector or string scalar equal to '1/2', '2/3', '3/4', or '5/6'.
Example: '3/4'
Data Types: double | char | string

decType — Decoding type
'soft' (default) | 'hard'

Decoding type of the binary convolutional code (BCC), specified as a character vector or a
string scalar. It can be 'hard' for a hard input Viterbi algorithm, or 'soft' for a soft
input Viterbi algorithm without any quantization.
Data Types: char | string

tDepth — Traceback depth
positive integer

Traceback depth of the Viterbi decoding algorithm, specified as a positive integer less
than or equal to the number of input symbols in sym.
Example: y = wlanBCCDecode(sym,'1/2','hard',50)
Data Types: double

 wlanBCCDecode

1-5

Output Arguments
y — Binary convolutionally decoded output
matrix

Binary convolutionally decoded output, returned as a binary matrix of integers. The
number of rows of y is equal to the number of rows of input sym multiplied by rate,
rounded to the next integer. The number of columns of y is equal to the number of
columns of sym.
Data Types: int8

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
vitdec | wlanBCCEncode

Introduced in R2017b

1 Functions — Alphabetical List

1-6

wlanBCCDeinterleave
Deinterleave binary convolutionally interleaved input

Syntax
y = wlanBCCDeinterleave(bits,type,numCBPSSI,cbw)
y = wlanBCCDeinterleave(bits,type,numCBPSSI)

Description
y = wlanBCCDeinterleave(bits,type,numCBPSSI,cbw) outputs the binary
convolutionally deinterleaved input bits for a specified interleaver type, as defined in
IEEE 802.11-2012 Section 18.3.5.7, IEEE 802.11ac™-2013 Section 22.3.10.8, and IEEE
802.11ah™ Section 24.3.9.8. numCBPSSI specifies the number of coded bits per OFDM
symbol per spatial stream per interleaver block and cbw speficies the channel bandwidth.

y = wlanBCCDeinterleave(bits,type,numCBPSSI) outputs the deinterleaved
input bits for the non-HT interleaver type.

Examples

Interleave and Deinterleave VHT Data Field

Perform BCC interleaving and deinterleaving for the VHT interleaving type.

Define the input parameters. Set the number of coded bits per OFDM symbol per spatial
stream per interleaver block to 52, the channel bandwidth to 20Mhz and the number of
spatial streams, named as numSS, to 4.

numCBPSSI = 52;
chanBW = 'CBW20';
numSS = 4;

Create a sequence of bits for two OFDM symbols, four spatial streams, and one segment.

 wlanBCCDeinterleave

1-7

bits = randi([0 1],(2*numCBPSSI),numSS,1);

Perform BCC interleaving on the bits.

intBits = wlanBCCInterleave(bits,'VHT',numCBPSSI,chanBW);

Perform BCC deinterleaving on the interleaved bits.

out = wlanBCCDeinterleave(intBits,'VHT',numCBPSSI,chanBW);

Verify that the deinterleaved data matches the original data.

isequal(bits,out)

ans = logical
 1

Interleave and Deinterleave Non-HT Data Field

Perform BCC interleaving and deinterleaving for the non-HT interleaving type.

Define the input parameters. Set the number of coded bits per OFDM symbol per spatial
stream per interleaver block to 48.

numCBPSSI = 48;

Create a sequence of random bits for one OFDM symbol, one spatial stream, and one
segment.

bits = randi([0 1],numCBPSSI,1);

Perform BCC interleaving on the bits.

intBits = wlanBCCInterleave(bits,'Non-HT',numCBPSSI);

Perform BCC deinterleaving on the interleaved bits.

out = wlanBCCDeinterleave(intBits,'Non-HT',numCBPSSI);

Verify that the deinterleaved data matches the original data.

isequal(bits,out)

1 Functions — Alphabetical List

1-8

ans = logical
 1

Input Arguments
bits — Input sequence
matrix | 3-D array

Input sequence containing binary convolutionally interleaved data, specified as an
(NCBPSSI×NSYM)-by-NSS-by-NSEG array, where:

• NCBPSSI is the number of coded bits per OFDM symbol per spatial stream per
interleaver block.

• NSYM is the number of OFDM symbols.
• NSS is the number of spatial streams.

• If type= 'Non-HT', then NSS must be 1.
• If type= 'VHT', then NSS must be from 1 to 8.

• NSEG is the number of segments.

Data Types: double

type — Type of interleaving
'VHT' | 'Non-HT'

The type of interleaving, specified as 'VHT' or 'Non-HT'.
Data Types: char | string

numCBPSSI — Number of coded bits per OFDM symbol per spatial stream per
interleaver block
positive integer

Number of coded bits per OFDM symbol per spatial stream per interleaver block specified
as a positive integer. As defined in IEEE 802.11ac-2013 Table 22-6, the value of
numCBPSSI depends on the interleaving type:

'Non-HT' NSD×NBPSCS

 wlanBCCDeinterleave

1-9

'VHT' NSD×NBPSCS/NSEG

where:

• NSD is the number of data subcarriers.
• NBPSCS is the number of coded bits per subcarrier per spatial stream, specified as 1, 2,

4, 6, or 8.
• NSEG is the number of segments.

When type= 'Non-HT', numCBPSSI can be 48, 96, 192, 288, and 384, since NCBPSSI = 48
× NBPSCS.

When type= 'VHT', numCBPSSI can be 24, 48, 96, 144, and 192, since NCBPSSI = 24 ×
NBPSCS.
Data Types: double

cbw — Channel bandwidth
'CBW1' | 'CBW2' | 'CBW4' | 'CBW8' | 'CBW10' | 'CBW16 | 'CBW20' | 'CBW40' |
'CBW80' | 'CBW160'

Channel bandwidth in MHz, specified as 'CBW1','CBW2', 'CBW4','CBW8', 'CBW10',
'CBW16', 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. When the interleaver type is set
to 'Non-HT', then cbw is optional.
Data Types: char | string

Output Arguments
y — Deinterleaved output
matrix | 3-D array

Deinterleaved output, returned as an (NCBPSSI×NSYM)-by-NSS-by-NSEG array, where:

• NCBPSSI is the number of coded bits per OFDM symbol per spatial stream per
interleaver block.

• NSYM is the number of OFDM symbols.
• NSS is the number of spatial streams.
• NSEG is the number of segments.

1 Functions — Alphabetical List

1-10

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
convdeintrlv | wlanBCCInterleave

Introduced in R2017b

 wlanBCCDeinterleave

1-11

wlanBCCEncode
Convolutionally encode binary data

Syntax
y = wlanBCCEncode(bits,rate)

Description
y = wlanBCCEncode(bits,rate) convolutionally encodes the binary input bits
using a binary convolutional code (BCC) at the specified rate. The BCC is defined in
IEEE 802.11-2012 Sections 18.3.5.6 and 20.3.11.6.

Examples

BCC-Encode Bits

Encode a sequence of data bits by using a BCC of rate 3/4.

Create the sequence of data bits.

dataBits = randi([0 1],300,1);

BCC-encode the data bits.

encodedData = wlanBCCEncode(dataBits,'3/4');
size(encodedData)

ans = 1×2

 400 1

1 Functions — Alphabetical List

1-12

BCC-Encode Two Streams

Encode two streams of data bits by using a BCC of rate 1/2.

Create the sequence of data bits.

dataBits = randi([0 1],100,1,'int8');

Parse the sequence of bits as defined in IEEE® 802.11™-2012 Section 20.3.11.5 and
IEEE® 802.11ac™-2013 Section 22.3.10.5.2. numES is the number of encoded streams.

numES = 2;
parsedData = reshape(dataBits,numES,[]).';

BCC-encode the parsed sequence.

encodedData = wlanBCCEncode(parsedData,1/2);
size(encodedData)

ans = 1×2

 100 2

Input Arguments
bits — Input sequence
matrix

Input sequence with data bits to encode, specified as a binary matrix. The number of
columns must equal the number of encoded streams. Each stream is encoded separately.
Data Types: double | int8

rate — Code rate
1/2 | 2/3 | 3/4 | 5/6

Code rate of the binary convolutional code (BCC), specified as a scalar, character array, or
string scalar. rate must be a numeric value equal to 1/2, 2/3, 3/4, or 5/6, or a character
vector or string scalar equal to '1/2', '2/3', '3/4', or '5/6'.
Example: '1/2'

 wlanBCCEncode

1-13

Data Types: double | char | string

Output Arguments
y — Binary convolutionally encoded output
matrix

Binary convolutionally encoded output, returned as a binary matrix of the same type of
bits. The number of rows of y is the result of dividing the number of rows of input bits
by rate, rounded to the next integer. The number of columns of y is equal to the number
of columns of bits.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
convenc | wlanBCCDecode

Introduced in R2017b

1 Functions — Alphabetical List

1-14

wlanBCCInterleave
Interleave binary convolutionally encoded input

Syntax
y = wlanBCCInterleave(bits,type,numCBPSSI,cbw)
y = wlanBCCInterleave(bits,type,numCBPSSI)

Description
y = wlanBCCInterleave(bits,type,numCBPSSI,cbw) outputs the interleaved
binary convolutionally encoded (BCC) input bits for a specified interleaver type, as
defined in IEEE 802.11-2012 Section 18.3.5.7, IEEE 802.11ac-2013 Section 22.3.10.8,
and IEEE 802.11ah Section 24.3.9.8. numCBPSSI specifies the number of coded bits per
OFDM symbol per spatial stream per interleaver block and cbw speficies the channel
bandwidth.

y = wlanBCCInterleave(bits,type,numCBPSSI) outputs the interleaved input
bits for the non-HT interleaver type.

Examples

Interleave VHT Data Field

Perform BCC interleaving for the 'VHT' interleaving type.

Define the input parameters. Set the number of coded bits per OFDM symbol per spatial
stream per interleaver block to 52, the channel bandwidth to 20Mhz and the number of
spatial streams, named as numSS, to 4.

numCBPSSI = 52;
cbw = 'CBW20';
numSS = 4;

 wlanBCCInterleave

1-15

Create a sequence of bits for two OFDM symbols, four spatial streams, and one segment.

inBits = randi([0 1],(2*numCBPSSI),numSS,1,'int8');

Perform BCC interleaving on the bits.

out = wlanBCCInterleave(inBits,'VHT',numCBPSSI,cbw);

Interleave Non-HT Data Field

Perform BCC interleaving for the non-HT interleaving type.

Define the input parameters. Set the number of coded bits per OFDM symbol per spatial
stream per interleaver block to 48.

numCBPSSI = 48;

Create a sequence of random bits for one OFDM symbol, one spatial stream, and one
segment.

inBits = randi([0 1],numCBPSSI,1);

Perform BCC interleaving on the bits.

out = wlanBCCInterleave(inBits,'Non-HT',numCBPSSI);

Compare the original sequence with the interleaved one.

[inBits out]

ans = 48×2

 1 1
 1 0
 0 0
 1 1
 1 1
 0 0
 0 0
 1 1
 1 0
 1 1

1 Functions — Alphabetical List

1-16

 ⋮

Interleave Sequence

Get the interleaving sequence of a non-HT interleaver type.

Define the input parameters. Set the number of coded bits per OFDM symbol per spatial
stream per interleaver block to 192.

numCBPSSI = 192;

Create a numeric sequence from 1 to numCBPSSI.

seq = (1:numCBPSSI).';

Perform BCC interleaving on the numeric sequence.

intSeq = wlanBCCInterleave(seq,'Non-HT',numCBPSSI);
intSeq(1:10)

ans = 10×1

 1
 17
 33
 49
 65
 81
 97
 113
 129
 145

Input Arguments
bits — Input sequence
matrix | 3-D array

 wlanBCCInterleave

1-17

Input sequence containing binary convolutionally encoded (BCC) data, specified as an
(NCBPSSI×NSYM)-by-NSS-by-NSEG array, where:

• NCBPSSI is the number of coded bits per OFDM symbol per spatial stream per
interleaver block.

• NSYM is the number of OFDM symbols.
• NSS is the number of spatial streams.

• If type= 'Non-HT', then NSS must be 1.
• If type= 'VHT', then NSS must be from 1 to 8.

• NSEG is the number of segments.

Data Types: double | int8

type — Type of interleaving
'VHT' | 'Non-HT'

The type of interleaving, specified as 'VHT' or 'Non-HT'.
Data Types: char | string

numCBPSSI — Number of coded bits per OFDM symbol per spatial stream per
interleaver block
positive integer

Number of coded bits per OFDM symbol per spatial stream per interleaver block specified
as a positive integer. As defined in IEEE 802.11ac-2013 Table 22-6, the value of
numCBPSSI depends on the interleaving type:

'Non-HT' NSD×NBPSCS

'VHT' NSD×NBPSCS/NSEG

where:

• NSD is the number of data subcarriers.
• NBPSCS is the number of coded bits per subcarrier per spatial stream, specified as 1, 2,

4, 6, or 8.
• NSEG is the number of segments.

When type= 'Non-HT', numCBPSSI can be 48, 96, 192, 288, and 384, since NCBPSSI = 48
× NBPSCS.

1 Functions — Alphabetical List

1-18

When type= 'VHT', numCBPSSI can be 24, 48, 96, 144, and 192, since NCBPSSI = 24 ×
NBPSCS.
Data Types: double

cbw — Channel bandwidth
'CBW1' | 'CBW2' | 'CBW4' | 'CBW8' | 'CBW10' | 'CBW16 | 'CBW20' | 'CBW40' |
'CBW80' | 'CBW160'

Channel bandwidth in MHz, specified as 'CBW1','CBW2', 'CBW4','CBW8', 'CBW10',
'CBW16', 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. When the interleaver type is set
to 'Non-HT', then cbw is optional.
Data Types: char | string

Output Arguments
y — Interleaved output
matrix | 3-D array

Interleaved output, returned as an (NCBPSSI×NSYM)-by-NSS-by-NSEG array, where:

• NCBPSSI is the number of coded bits per OFDM symbol per spatial stream per
interleaver block.

• NSYM is the number of OFDM symbols.
• NSS is the number of spatial streams.
• NSEG is the number of segments.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

 wlanBCCInterleave

1-19

See Also
convintrlv | wlanBCCDeinterleave

Introduced in R2017b

1 Functions — Alphabetical List

1-20

wlanCoarseCFOEstimate
Coarse estimate of carrier frequency offset

Syntax
fOffset = wlanCoarseCFOEstimate(rxSig,cbw)
fOffset = wlanCoarseCFOEstimate(rxSig,cbw,corrOffset)

Description
fOffset = wlanCoarseCFOEstimate(rxSig,cbw) returns a coarse estimate of the
carrier frequency offset (CFO) given received time-domain “L-STF” on page 1-271

samples and channel bandwidth.

fOffset = wlanCoarseCFOEstimate(rxSig,cbw,corrOffset) returns a coarse
estimate given correlation offset, corrOffset.

Examples

Coarse Estimate of CFO for Non-HT Waveform

Create a non-HT configuration object.

nht = wlanNonHTConfig;

Generate a non-HT waveform.

txSig = wlanWaveformGenerator([1;0;0;1],nht);

Create a phase and frequency offset object and introduce a 2 kHz frequency offset.

1. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

 wlanCoarseCFOEstimate

1-21

pfOffset = comm.PhaseFrequencyOffset('SampleRate',20e6,'FrequencyOffset',2000);
rxSig = pfOffset(txSig);

Extract the L-STF.

ind = wlanFieldIndices(nht,'L-STF');
rxLSTF = rxSig(ind(1):ind(2),:);

Estimate the frequency offset from the L-STF.

freqOffsetEst = wlanCoarseCFOEstimate(rxLSTF,'CBW20')

freqOffsetEst = 2.0000e+03

Estimate and Correct CFO for VHT Waveform with Correlation Offset

Estimate the frequency offset for a VHT signal passing through a noisy, TGac channel.
Correct for the frequency offset.

Create a VHT configuration object and create the L-STF.

vht = wlanVHTConfig;
txstf = wlanLSTF(vht);

Set the channel bandwidth and sample rate.

cbw = 'CBW80';
fs = 80e6;

Create TGac and thermal noise channel objects. Set the delay profile of the TGac channel
to 'Model-C'. Set the noise figure of the thermal noise channel to 9 dB.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',cbw, ...
 'DelayProfile','Model-C','LargeScaleFadingEffect','Pathloss');

noise = comm.ThermalNoise('SampleRate',fs,'NoiseMethod','Noise figure', ...
 'NoiseFigure',9);

Pass the L-STF through the noisy TGac channel.

rxstfNoNoise = tgacChan(txstf);
rxstf = noise(rxstfNoNoise);

1 Functions — Alphabetical List

1-22

Create a phase and frequency offset object and introduce a 750 Hz frequency offset.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',fs, ...
 'FrequencyOffsetSource','Input port');
rxstf = pfOffset(rxstf,750);

For the model-C delay profile, the RMS delay spread is 30 ns, which is 3/8 of the 80 ns
short training symbol duration. As such, set the correlation offset to 0.375.

corrOffset = 0.375;

Estimate the frequency offset. Your results may differ slightly.

fOffsetEst = wlanCoarseCFOEstimate(rxstf,cbw,corrOffset)

fOffsetEst = 746.2700

The estimate is very close to the introduced CFO of 750 Hz.

Change the delay profile to 'Model-E', which has an RMS delay spread of 100 ns.

release(tgacChan)
tgacChan.DelayProfile = 'Model-E';

Pass the transmitted signal through the modified channel and apply the 750 Hz CFO.

rxstfNoNoise = tgacChan(txstf);
rxstf = noise(rxstfNoNoise);
rxstf = pfOffset(rxstf,750);

Estimate the frequency offset.

fOffsetEst = wlanCoarseCFOEstimate(rxstf,cbw,corrOffset)

fOffsetEst = 947.7234

The estimate is inaccurate because the RMS delay spread is greater than the duration of
the training symbol.

Set the correlation offset to the maximum value of 1 and estimate the CFO.

corrOffset = 1;
fOffsetEst = wlanCoarseCFOEstimate(rxstf,cbw,corrOffset)

fOffsetEst = 745.3640

 wlanCoarseCFOEstimate

1-23

The estimate is accurate because the autocorrelation does not use the first training
symbol. The channel delay renders this symbol useless.

Correct for the estimated frequency offset.

rxstfCorrected = pfOffset(rxstf,-fOffsetEst);

Estimate the frequency offset of the corrected signal.

fOffsetEstCorr = wlanCoarseCFOEstimate(rxstfCorrected,cbw,corrOffset)

fOffsetEstCorr = 2.7402e-11

The corrected signal has negligible frequency offset.

Two-Step CFO Estimation and Correction

Estimate and correct for a significant carrier frequency offset in two steps. Estimate the
frequency offset after all corrections have been made.

Set the channel bandwidth and the corresponding sample rate.

cbw = 'CBW40';
fs = 40e6;

Coarse Frequency Correction

Generate an HT format configuration object.

cfg = wlanHTConfig('ChannelBandwidth',cbw);

Generate the transmit waveform.

txSig = wlanWaveformGenerator([1;0;0;1],cfg);

Create TGn and thermal noise channel objects. Set the noise figure of the receiver to 9
dB.

tgnChan = wlanTGnChannel('SampleRate',fs,'DelayProfile','Model-D', ...
 'LargeScaleFadingEffect','Pathloss and shadowing');
noise = comm.ThermalNoise('SampleRate',fs, ...
 'NoiseMethod','Noise figure', ...
 'NoiseFigure',9);

1 Functions — Alphabetical List

1-24

Pass the waveform through the TGn channel and add noise.

rxSigNoNoise = tgnChan(txSig);
rxSig = noise(rxSigNoNoise);

Create a phase and frequency offset object to introduce a carrier frequency offset.
Introduce a 2 kHz frequency offset.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',fs,'FrequencyOffsetSource','Input port');
rxSig = pfOffset(rxSig,2e3);

Extract the L-STF signal for coarse frequency offset estimation.

istf = wlanFieldIndices(cfg,'L-STF');
rxstf = rxSig(istf(1):istf(2),:);

Perform a coarse estimate of the frequency offset. Your results may differ.

foffset1 = wlanCoarseCFOEstimate(rxstf,cbw)

foffset1 = 2.0221e+03

Correct for the estimated offset.

rxSigCorr1 = pfOffset(rxSig,-foffset1);

Fine Frequency Correction

Extract the L-LTF signal for fine offset estimation.

iltf = wlanFieldIndices(cfg,'L-LTF');
rxltf1 = rxSigCorr1(iltf(1):iltf(2),:);

Perform a fine estimate of the corrected signal.

foffset2 = wlanFineCFOEstimate(rxltf1,cbw)

foffset2 = -11.0795

The corrected signal offset is reduced from 2000 Hz to approximately 7 Hz.

Correct for the remaining offset.

rxSigCorr2 = pfOffset(rxSigCorr1,-foffset2);

Determine the frequency offset of the twice corrected signal.

 wlanCoarseCFOEstimate

1-25

rxltf2 = rxSigCorr2(iltf(1):iltf(2),:);
deltaFreq = wlanFineCFOEstimate(rxltf2,cbw)

deltaFreq = -2.0374e-11

The CFO is zero.

Input Arguments
rxSig — Received signal
matrix

Received signal containing an L-STF, specified as an NS-by-NR matrix. NS is the number of
samples in the L-STF and NR is the number of receive antennas.

Note If the number of samples in rxSig is greater than the number of samples in the L-
STF, the trailing samples are not used to estimate the carrier frequency offset.

Data Types: double

cbw — Channel bandwidth
'CBW5' | 'CBW10' | 'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth in MHz, specified as: 'CBW5', 'CBW10', 'CBW20', 'CBW40',
'CBW80', or 'CBW160'.
Data Types: char | string

corrOffset — Correlation offset
0.75 (default) | real scalar from 0 to 1

Correlation offset as a fraction of a short training symbol, specified as a real scalar from 0
to 1. The duration of the short training symbol varies with bandwidth. For more
information, see “L-STF” on page 1-27.
Data Types: double

1 Functions — Alphabetical List

1-26

Output Arguments
fOffset — Frequency offset
real scalar

Frequency offset in Hz, returned as a real scalar.
Data Types: double

Definitions

L-STF
The legacy short training field (L-STF) is the first field of the 802.11 OFDM PLCP legacy
preamble. The L-STF is a component of VHT, HT, and non-HT PPDUs.

The L-STF duration varies with channel bandwidth.

Channel Bandwidth
(MHz)

Subcarrier
Frequency
Spacing, ΔF (kHz)

Fast Fourier
Transform (FFT)
Period
(TFFT = 1 / ΔF)

L-STF Duration
(TSHORT = 10 × TFFT /
 4)

20, 40, 80, and 160 312.5 3.2 μs 8 μs
10 156.25 6.4 μs 16 μs

 wlanCoarseCFOEstimate

1-27

Channel Bandwidth
(MHz)

Subcarrier
Frequency
Spacing, ΔF (kHz)

Fast Fourier
Transform (FFT)
Period
(TFFT = 1 / ΔF)

L-STF Duration
(TSHORT = 10 × TFFT /
 4)

5 78.125 12.8 μs 32 μs

Because the sequence has good correlation properties, it is used for start-of-packet
detection, for coarse frequency correction, and for setting the AGC. The sequence uses 12
of the 52 subcarriers that are available per 20 MHz channel bandwidth segment. For 5
MHz, 10 MHz, and 20 MHz bandwidths, the number of channel bandwidths segments is
1.

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[2] Li, Jian. “Carrier Frequency Offset Estimation for OFDM-Based WLANs.” IEEE Signal
Processing Letters. Vol. 8, Issue 3, Mar 2001, pp. 80–82.

[3] Moose, P. H. “A technique for orthogonal frequency division multiplexing frequency
offset correction.” IEEE Transactions on Communications. Vol. 42, Issue 10, Oct
1994, pp. 2908–2914.

[4] Perahia, E. and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac. 2nd
Edition. United Kingdom: Cambridge University Press, 2013.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

1 Functions — Alphabetical List

1-28

See Also
comm.PhaseFrequencyOffset | wlanFineCFOEstimate | wlanLSTF

Introduced in R2015b

 wlanCoarseCFOEstimate

1-29

wlanConstellationDemap
Constellation demapping

Syntax
y = wlanConstellationDemap(sym,noiseVarEst,numBPSCS)
y = wlanConstellationDemap(sym,noiseVarEst,numBPSCS,demapType)
y = wlanConstellationDemap(sym,noiseVarEst,numBPSCS,phase)
y = wlanConstellationDemap(sym,noiseVarEst,numBPSCS,demapType,phase)

Description
y = wlanConstellationDemap(sym,noiseVarEst,numBPSCS) demaps the received
input sym using the soft-decision approximate LLR method for the specified number of
coded bits per subcarrier per spatial stream numBPSCS. The received symbols must be
generated with one of these modulations:

• BPSK, QPSK, 16QAM, or 64QAM, as per IEEE 802.11-2012, Section 18.3.5.8
• 256QAM, as per IEEE 802.11ac-2012, Section 22.3.10.9.1
• 1024QAM, as per IEEE 802.11-16/0922r2

y = wlanConstellationDemap(sym,noiseVarEst,numBPSCS,demapType)
specifies the demapping type.

y = wlanConstellationDemap(sym,noiseVarEst,numBPSCS,phase) derotates
the symbols clockwise before demapping by the number of radians specified in phase.

y = wlanConstellationDemap(sym,noiseVarEst,numBPSCS,demapType,phase)
specifies the demapping type and the phase rotation.

Examples

1 Functions — Alphabetical List

1-30

256QAM Demapping

Perform a 256QAM demapping, as defined in IEEE® 802.11ac™-2013, Section
22.3.10.9.1.

Create the sequence of data bits.

bits = randi([0 1],416,1,'int8');

Perform the constellation mapping on the data bits by using a 256QAM modulation. The
size of the output returned equals the size of the input sequence divided by eight.

numBPSCS = 8;
mappedData = wlanConstellationMap(bits,numBPSCS);
size(mappedData)

ans = 1×2

 52 1

Perform the 256QAM constellation demapping. Because the default demapping type is
soft, the output is a vector of soft bits.

noiseVar = 0;
demappedData = wlanConstellationDemap(mappedData,noiseVar,numBPSCS);
size(demappedData)

ans = 1×2

 416 1

Constellation Demapping with Hard Demodulation

Perform a 256QAM demapping by using hard demodulation. The demapping is defined in
IEEE® 802.11™-2012 Section 18.3.5.8

Create the sequence of data bits.

 bits = randi([0 1],416,1);

Perform the constellation mapping on the data bits by using a 256QAM constellation.

 wlanConstellationDemap

1-31

numBPSCS = 8;
mappedData = wlanConstellationMap(bits,numBPSCS);

Perform the hard 256QAM constellation demapping. Because it is a hard demapping, the
estimated noise variance is ignored.

noiseVar = 0;
demapType = 'hard';
demappedData = wlanConstellationDemap(mappedData,noiseVar,numBPSCS,demapType);

Verify that the demapped data matches the original data.

isequal(bits,demappedData)

ans = logical
 1

BPSK and QBPSK Demapping for VHT-SIG-A Field

BPSK and QBPSK demapping for different OFDM symbols for the VHT-SIG-A field by
using a soft demodulation. The demapping is defined in IEEE® 802.11ac™-2013 Section
22.3.8.3.3

Create the sequence of data bits. Specify the two OFDM symbols in columns.

 bits = randi([0 1],48,2,'int8');

Perform constellation mapping on the data bits. Specify the size of the constellation
rotation as the number in columns of the input sequence. The first column is mapped with
a BPSK modulation. The second column is modulated with a QBPSK modulation.

numBPSCS = 1;
phase = [0 pi/2];
mappedData = wlanConstellationMap(bits,numBPSCS,phase);

Perform the constellation demapping with an estimated variance noise equal to zero (no
added noise). To derotate the constellation, specify the same phase as in the mapping
function. The output is a vector of soft bits ready to be the input of a convolutional
decoder.

1 Functions — Alphabetical List

1-32

noiseVar = 0;
demappedData = wlanConstellationDemap(mappedData,noiseVar,numBPSCS,phase);

Verify that the demapped data matches the original data. Because no noise is present, you
can recover the original data without errors by assigning the negative values to a logical
1 and the positive values to a logical 0. In other words, you can convert the soft bits into
hard bits.

demappedBits = int8((demappedData<=0));
isequal(bits,demappedBits)

ans = logical
 1

4-D Array Demapping

QBPSK demapping on a four-dimensional array by using hard demodulation.

Create the sequence of data bits as an array of four dimensions, with 416 coded bits per
subcarrier per spatial stream per interleaver block, four OFDM symbols, two spatial
streams, and two segments.

numCBPSSI = 416;
numSym = 4;
numSS = 2;
numSeg = 2;
bits = randi([0 1],numCBPSSI,numSym,numSS,numSeg);
size(bits)

ans = 1×4

 416 4 2 2

Perform QBPSK constellation mapping on the data bits with a rotation of radians.

numBPSCS = 1;
phase = pi/2;
mappedData = wlanConstellationMap(bits,numBPSCS,phase);
size(mappedData)

 wlanConstellationDemap

1-33

ans = 1×4

 416 4 2 2

Perform hard QBPSK constellation demapping. To de-rotate the constellation, specify the
same phase as in the mapping function. Because it is a hard demapping, the estimated
noise variance is ignored.

noiseVar = 0;
demapType = 'hard';
demappedData = wlanConstellationDemap(mappedData,noiseVar,numBPSCS,demapType);

Verify that the demapped data matches the original data.

isequal(bits,demappedData)

ans = logical
 1

Input Arguments
sym — Input sequence
vector | matrix | multidimensional array

Input sequence of received symbols, specified as a numeric vector, matrix, or
multidimensional array of integers.
Data Types: double
Complex Number Support: Yes

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar. When the demapping type is
set to 'hard', the noise variance estimate is not required and therefore is ignored.
Example: 0.7071
Data Types: double

1 Functions — Alphabetical List

1-34

numBPSCS — Number of coded bits per subcarrier per spatial stream
1 | 2 | 4 | 6 | 8 | 10

Number of coded bits per subcarrier per spatial stream, specified as log2(M), where M is
the modulation order. Therefore, numBPSCS must equal:

• 1 for a BPSK modulation
• 2 for a QPSK modulation
• 4 for a 16QAM modulation
• 6 for a 64QAM modulation
• 8 for a 256QAM modulation
• 10 for a 1024QAM modulation

Example: 4
Data Types: double

demapType — Demapping type
'soft' (default) | 'hard'

Demapping type, specified as a character vector or a string scalar. It can be 'hard' for
hard-decision demapping or 'soft' for the soft-decision approximate LLR method.
Data Types: double

phase — Constellation rotation
scalar | vector | multidimensional array

Constellation rotation in radians, specified as a scalar, vector, or multidimensional array.
The size of phase must be compatible with the size of the input sym. phase and sym have
compatible sizes if, for each corresponding dimension, the dimension sizes are either
equal or one of them is 1. When one of the dimensions of sym is equal to 1, and the
corresponding dimension of phase is larger than 1, then the output dimensions have the
same size as the dimensions of phase.
Example: pi*(0:size(bits,1)/numBPSCS-1).'/2;
Data Types: double

 wlanConstellationDemap

1-35

Output Arguments
y — Demapped symbols
vector | matrix | multidimensional array

Demapped symbols, returned as a numeric vector, matrix, or multidimensional array of
integers. y has the same size as sym except for the number of rows, which is equal to the
number of rows of sym, multiplied by numBPSCS.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanConstellationMap

Introduced in R2017b

1 Functions — Alphabetical List

1-36

wlanConstellationMap
Constellation mapping

Syntax
y = wlanConstellationMap(bits,numBPSCS)
y = wlanConstellationMap(bits,numBPSCS,phase)

Description
y = wlanConstellationMap(bits,numBPSCS) maps the input sequence bits using
the number of coded bits per subcarrier per spatial stream, numBPSCS, to one of the
following modulations:

• BPSK, QPSK, 16QAM, or 64QAM, as per IEEE 802.11-2012, Section 18.3.5.8
• 256QAM, as per IEEE 802.11ac-2012, Section 22.3.10.9.1
• 1024QAM, as per IEEE 802.11-16/0922r2

The constellation mapping is performed column-wise.

y = wlanConstellationMap(bits,numBPSCS,phase) rotates the constellation
points counterclockwise by the number of radians specified in phase.

Examples

256QAM Mapping

Perform a 256QAM mapping, as defined in IEEE® 802.11ac™-2013 Section 22.3.10.9.1.

Create the sequence of data bits.

bits = randi([0 1],416,1,'int8');

Perform the constellation mapping on the data bits with a 256QAM modulation.

 wlanConstellationMap

1-37

numBPSCS = 8;
mappedData = wlanConstellationMap(bits,numBPSCS);

The size of the output returned by this modulation equals the size of the input sequence
divided by eight.

size(mappedData)

ans = 1×2

 52 1

π/2-BPSK Mapping

Perform a -BPSK mapping on a sequence of data bits as defined in IEEE®
802.11ad™-2012 Section 21.6.3.2.4.

Create the sequence of data bits.

bits = randi([0 1],512,1);

Perform the BPSK mapping on the data bits with a rotation of radians. Note that the
size of the constellation rotation phase is equal to the size of input sequence.

numBPSCS = 1;
phase = pi*(0:size(bits,1)/numBPSCS-1).'/2;
mappedData = wlanConstellationMap(bits,numBPSCS,phase);

As we performed a BPSK mapping, the number of symbols per bit is one, therefore the
size of the output is equal to the size of the original sequence.

size(mappedData)

ans = 1×2

 512 1

1 Functions — Alphabetical List

1-38

Display the modulated signal constellation using the scatterplot function.

scatterplot(mappedData);

BPSK and QBPSK Mapping for VHT-SIG-A field

Perform BPSK and QBPSK demapping for different OFDM symbols for the VHT-SIG-A field
by using a soft demodulation. The mapping is defined in IEEE® 802.11ac™-2013 Section
22.3.8.3.3 for the VHT-SIG-A field.

Create the sequence of data bits. Place the two OFDM symbols in columns.

 wlanConstellationMap

1-39

bits = randi([0 1],48,2,'int8');

Perform constellation mapping on the data bits. Specify the size of constellation rotation
phase as the number of columns in the input sequence. The first column is mapped with
a BPSK modulation. The second column is modulated with a QBPSK modulation.

numBPSCS = 1;
phase = [0 pi/2];
mappedData = wlanConstellationMap(bits,numBPSCS,phase);

Display the modulated signal constellation by using the scatterplot function. The first
plot shows the data after the BPSK modulation, and the second plot shows the QBPSK-
modulated symbols.

scatterplot(mappedData(:,1))

1 Functions — Alphabetical List

1-40

scatterplot(mappedData(:,2))

 wlanConstellationMap

1-41

Input Arguments
bits — Input sequence
vector | matrix | multidimensional array

Input sequence of bits to map into symbols, specified as a binary vector, matrix, or
multidimensional array.
Data Types: double | int8

numBPSCS — Number of coded bits per subcarrier per spatial stream
1 | 2 | 4 | 6 | 8 | 10

1 Functions — Alphabetical List

1-42

Number of coded bits per subcarrier per spatial stream, specified as log2(M), where M is
the modulation order. Therefore, numBPSCS must equal:

• 1 for a BPSK modulation
• 2 for a QPSK modulation
• 4 for a 16QAM modulation
• 6 for a 64QAM modulation
• 8 for a 256QAM modulation
• 10 for a 1024QAM modulation

Example: 4
Data Types: double

phase — Constellation rotation
scalar | vector | multidimensional array

Constellation rotation in radians, specified as a scalar, vector, or multidimensional array.
The size of phase must be compatible with the size of the input bits. phase and bits
have compatible sizes if, for each corresponding dimension, the dimension sizes are either
equal or one of them is 1. When one of the dimensions of bits is equal to 1, and the
corresponding dimension of phase is larger than 1, then the output dimensions have the
same size as the dimensions of phase.
Example: pi*(0:size(bits,1)/numBPSCS-1).'/2;
Data Types: double

Output Arguments
y — Mapped symbols
vector | matrix | multidimensional array

Mapped symbols, returned as a complex vector, matrix, or multidimensional array. y has
the same size as bits, except for the number of rows, which is equal to the number of
rows of bits divided by numBPSCS.

 wlanConstellationMap

1-43

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanConstellationDemap

Introduced in R2017b

1 Functions — Alphabetical List

1-44

wlanDMGConfig
Create DMG format configuration object

Syntax
cfgDMG = wlanDMGConfig
cfgDMG = wlanDMGConfig(Name,Value)

Description
cfgDMG = wlanDMGConfig creates a configuration object that initializes parameters for
an IEEE 802.11 directional multi-gigabit (DMG) format “PPDU” on page 1-53.

cfgDMG = wlanDMGConfig(Name,Value) creates a DMG format configuration object
that overrides the default settings using one or more Name,Value pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create DMG Configuration Object with Default Settings

cfgDMG = wlanDMGConfig

cfgDMG =
 wlanDMGConfig with properties:

 MCS: '0'
 TrainingLength: 0
 PSDULength: 1000
 ScramblerInitialization: 2
 Turnaround: 0

 wlanDMGConfig

1-45

Create DMG Configuration Object and Modify Default Settings

Create a DMG configuration object and use Name,Value pairs to override default
settings.

dtpgrouppairs = (randperm(42)-1)';
cfgDMG = wlanDMGConfig('MCS',13,'TonePairingType','Dynamic', ...
 'DTPGroupPairIndex',dtpgrouppairs)

cfgDMG =
 wlanDMGConfig with properties:

 MCS: 13
 TrainingLength: 0
 TonePairingType: 'Dynamic'
 DTPGroupPairIndex: [42x1 double]
 DTPIndicator: 0
 PSDULength: 1000
 ScramblerInitialization: 2
 AggregatedMPDU: 0
 LastRSSI: 0
 Turnaround: 0

Create DMG Configuration Object and Return DMG PHY Type

Create DMG configuration objects and change the default property settings by using dot
notation. Use the phyType object function to access the DMG PHY modulation type.

Create a DMG configuration object and return the DMG PHY modulation type. By default,
the configuration object creates properties to model the DMG control PHY.

dmg = wlanDMGConfig;
phyType(dmg)

ans =
'Control'

Model the SC PHY by modifying the defaults by using the dot notation to specify an MCS
of 5.

1 Functions — Alphabetical List

1-46

dmg.MCS = 5;
phyType(dmg)

ans =
'SC'

Create DMG Configuration Object with Extended MCS

Create DMG configuration objects and change the default MCS setting by using dot
notation.

Create a DMG configuration object and return the DMG PHY modulation type. By default,
the configuration object creates properties to model the DMG control PHY.

dmg = wlanDMGConfig;
phyType(dmg)

ans =
'Control'

Model the SC PHY by modifying the defaults by using the dot notation to specify an
extended MCS of 9.1.

dmg.MCS = '9.1';
phyType(dmg)

ans =
'SC'

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

 wlanDMGConfig

1-47

Example: 'MCS','13','TrainingLength',4 specifies a modulation and coding
scheme of 13, which indicates OFDM PHY modulation and code rate of 1/2. Also, a PPDU
with four training fields is specified for the DMG format packet.

MCS — Modulation and coding scheme index
0 (default) | integer from 0 to 24 | '9.1' | '12.1' | '12.2' | '12.3' | '12.4' | '12.5'
| '12.6'

Modulation and coding scheme index, specified as an integer from 0 to 24 or one of the
extended MCS indices: '9.1', '12.1', '12.2', '12.3', '12.4','12.5' or '12.6'.
An extended (non-integer) MCS index can only be specified as a character vector or string
scalar. An integer MCS index can be specified as a character vector, string scalar, or
integer. The MCS index indicates the modulation and coding scheme used in transmitting
the current packet.

• Modulation and coding scheme for control PHY

MCS Index Modulation Coding Rate Comment

0 DBPSK 1/2
Code rate and data
rate might be lower
due to codeword
shortening.

• Modulation and coding schemes for single-carrier modulation

MCS Index Modulation Coding Rate NCBPS Repetition
1

π/2 BPSK

1/2

1

2
2 1/2

1

3 5/8
4 3/4
5 13/16
6

π/2 QPSK

1/2

2
7 5/8
8 3/4
9 13/16

9.1 7/8

1 Functions — Alphabetical List

1-48

MCS Index Modulation Coding Rate NCBPS Repetition
10

π/2 16QAM

1/2

4
11 5/8
12 3/4

12.1 3/4
12.2 7/8
12.3

64QAM

5/8

6
12.4 3/4
12.5 13/16
12.6 7/8

NCBPS is the number of coded bits per symbol.

• Modulation and coding schemes for OFDM modulation

MCS Index Modulation Coding Rate NBPSC NCBPS NDBPS

13
SQPSK

1/2
1 336

168
14 5/8 210
15

QPSK
1/2

2 672
336

16 5/8 420
17 3/4 504
18

16QAM

1/2

4 1344

672
19 5/8 840
20 3/4 1008
21 13/16 1092
22

64QAM
5/8

6 2016
1260

23 3/4 1512
24 13/16 1638

NBPSC is the number of coded bits per single carrier.

NCBPS is the number of coded bits per symbol.

NDBPS is the number of data bits per symbol.

 wlanDMGConfig

1-49

Data Types: double | char | string

TrainingLength — Number of training fields
0 (default) | integer from 0 to 64

Number of training fields, specified as an integer from 0 to 64. TrainingLength must be
a multiple of four.
Data Types: double

PacketType — Packet training field type
'TRN-R' (default) | 'TRN-T'

Packet training field type, specified as 'TRN-R' or 'TRN-T'. This property applies when
TrainingLength > 0.

'TRN-R' indicates that the packet includes or requests receive-training subfields and
'TRN-T' indicates that the packet includes transmit-training subfields.
Data Types: char | string

BeamTrackingRequest — Request beam tracking
false (default) | true

Request beam tracking, specified as a logical. Setting BeamTrackingRequest to true
indicates that beam tracking is requested. This property applies when
TrainingLength > 0.
Data Types: logical

TonePairingType — Tone pairing type
'Static' (default) | 'Dynamic'

Tone pairing type, specified as 'Static' or 'Dynamic'. This property applies when MCS
is from 13 to 17. Specifically, TonePairingType applies when using OFDM and either
SQPSK or QPSK modulation.
Data Types: char | string

DTPGroupPairIndex — DTP group pair index
42-by-1 integer vector

DTP group pair index, specified as a 42-by-1 integer vector for each pair. Element values
must be from 0 to 41, with no duplicates. This property applies when MCS is from 13 to 17
and when TonePairingType is 'Dynamic'.

1 Functions — Alphabetical List

1-50

Data Types: double

DTPIndicator — DTP update indicator
false (default) | true

DTP update indicator, specified as a logical. Toggle DTPIndicator between packets to
indicate that the dynamic tone pair mapping has been updated. This property applies
when MCS is from 13 to 17 and when TonePairingType is 'Dynamic'.
Data Types: logical

PSDULength — Number of bytes carried in the user payload
1000 (default) | integer from 1 to 262,143

Number of bytes carried in the user payload, specified as an integer from 1 to 262,143.
Data Types: double

ScramblerInitialization — Initial scrambler state
2 (default) | integer from 1 to 127

Initial scrambler state of the data scrambler for each packet generated, specified as an
integer depending on the value of MCS:

• If MCS is 0, the initial scrambler state is limited to values from 1 to 15, corresponding
to a 4-by-1 column vector..

• If MCS is '9.1', '12.1', '12.2', '12.3', '12.4', '12.5' or '12.6', the valid
range of the initial scrambler is from 0 to 31, corresponding to a 5-by-1 column vector.

• For the remaining MCS values, the valid range is from 1 to 127, corresponding to a 7-
by-1 column vector.

The default value of 2 is the example state given in IEEE Std 802.11-2012, Amendment 3,
Section L.5.2.
Data Types: double | int8

AggregatedMPDU — MPDU aggregation indicator
false (default) | true

MPDU aggregation indicator, specified as a logical. Setting AggregatedMPDU to true
indicates that the current packet uses A-MPDU aggregation.
Data Types: logical

 wlanDMGConfig

1-51

LastRSSI — Received power level of the last packet
0 (default) | integer from 0 to 15

Received power level of the last packet, specified as an integer from 0 to 15.

When transmitting a response frame immediately following a short interframe space
(SIFS) period, a DMG STA sets the LastRSSI as specified in IEEE 802.11ad™-2012,
Section 9.3.2.3.3, to map to the TXVECTOR parameter LAST_RSSI of the response frame
to the power that was measured on the received packet, as reported in the RCPI field of
the frame that elicited the response frame. The encoding of the value for TXVECTOR is as
follows:

• Power values equal to or above –42 dBm are represented as the value 15.
• Power values between –68 dBm and –42 dBm are represented as round((power – (–71

dBm))/2).
• Power values less than or equal to –68 dBm are represented as the value of 1.
• For all other cases, the DMG STA shall set the TXVECTOR parameter LAST_RSSI of

the transmitted frame to 0.

The LAST_RSSI parameter in RXVECTOR maps to LastRSSI and indicates the value of
the LAST_RSSI field from the PCLP header of the received packet. The encoding of the
value for RXVECTOR is as follows:

• A value of 15 represents power greater than or equal to –42 dBm.
• Values from 2 to 14 represent power levels (–71+value×2) dBm.
• A value of 1 represents power less than or equal to –68 dBm.
• A value of 0 indicates that the previous packet was not received during the SIFS

period before the current transmission.

For more information, see IEEE 802.11ad-2012, Section 21.2.
Data Types: double

Turnaround — Turnaround indication
false (default) | true

Turnaround indication, specified as a logical. Setting Turnaround to true indicates that
the STA is required to listen for an incoming PPDU immediately following the
transmission of the PPDU. For more information, see IEEE 802.11ad-2012, Section
9.3.2.3.3.

1 Functions — Alphabetical List

1-52

Data Types: logical

Output Arguments
cfgDMG — DMG PPDU configuration
wlanDMGConfig object

DMG “PPDU” on page 1-53 configuration, returned as a wlanDMGConfig object. The
properties of cfgDMG are described in wlanDMGConfig.

Definitions
PPDU
The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

References
[1] IEEE Std 802.11ad™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

 wlanDMGConfig

1-53

See Also
wlanDMGConfig.phyType | wlanHTConfig | wlanNonHTConfig | wlanS1GConfig |
wlanVHTConfig | wlanWaveformGenerator

Topics
“Packet Size and Duration Dependencies”

Introduced in R2017a

1 Functions — Alphabetical List

1-54

wlanDMGConfig.phyType
Return DMG PHY modulation type

Syntax
type = phyType(cfg)

Description
type = phyType(cfg) returns the DMG physical layer (PHY) modulation method,
based on the configuration of the DMG object.

Input Arguments
cfg — DMG PPDU configuration
wlanDMGConfig object

DMG PPDU configuration, specified as a wlanDMGConfig object.

Output Arguments
type — DMG PHY modulation type
Control | SC | OFDM

DMG PHY modulation type, specified as 'Control', 'SC', or 'OFDM'.

Examples
Create DMG Configuration Object and Return DMG PHY Type

Create DMG configuration objects and change the default property settings by using dot
notation. Use the phyType object function to access the DMG PHY modulation type.

 wlanDMGConfig.phyType

1-55

Create a DMG configuration object and return the DMG PHY modulation type. By default,
the configuration object creates properties to model the DMG control PHY.

dmg = wlanDMGConfig;
phyType(dmg)

ans =
'Control'

Model the SC PHY by modifying the defaults by using the dot notation to specify an MCS
of 5.

dmg.MCS = 5;
phyType(dmg)

ans =
'SC'

See Also
wlanDMGConfig

Introduced in R2017b

1 Functions — Alphabetical List

1-56

wlanDMGDataBitRecover
Recover data bits from DMG data field

Syntax
DataBits = wlanDMGDataBitRecover(rxDataSig,noiseVarEst,cfg)
DataBits = wlanDMGDataBitRecover(rxDataSig,noiseVarEst,csi,cfg)
DataBits = wlanDMGDataBitRecover(___ ,Name,Value)

Description
DataBits = wlanDMGDataBitRecover(rxDataSig,noiseVarEst,cfg) recovers
the data bits given the data field from a DMG transmission (OFDM, single-carrier, or
control PHY), the noise variance estimate, and the DMG configuration object.

DataBits = wlanDMGDataBitRecover(rxDataSig,noiseVarEst,csi,cfg) uses
the channel state information specified in csi to enhance the demapping of OFDM
subcarriers.

DataBits = wlanDMGDataBitRecover(___ ,Name,Value) specifies additional
options in name-value pair arguments, using the inputs from preceding syntaxes. When a
name-value pair is not specified, its default value is used.

Examples

Recover Data Field from DMG SC PHY

Recover data information bits from the DMG data field of single-carrier (SC) PHY.

Transmitter

Create the DMG configuration object with a modulation and coding scheme (MCS) for the
SC PHY.

 wlanDMGDataBitRecover

1-57

cfgDMG = wlanDMGConfig('MCS',10);

Create the input sequence of data bits, specifying it as a column vector with
cfgDMG.PSDULength*8 elements. Generate the DMG transmission waveform.

txBits = randi([0 1],cfgDMG.PSDULength*8,1,'int8');
tx = wlanWaveformGenerator(txBits,cfgDMG);

AWGN Channel

Set an SNR of 10 dB, calculate the noise power (noise variance), and add AWGN to the
transmission waveform by using the awgn function.

SNR = 10;
nVar = 10^(-SNR/10);
rx = awgn(tx,SNR);

Receiver

Extract the data field by using the wlanFieldIndices function to generate the PPDU
field indices.

ind = wlanFieldIndices(cfgDMG);
rxData = rx(ind.DMGData(1):ind.DMGData(2));

Reshape the received data waveform into blocks. Set the data block size to 512 and the
guard interval length to 64. Remove the last guard interval from the received data
waveform. The resulting data waveform is a 512-by-Nblks matrix, where Nblks is the
number of DMG data blocks.

blkSize = 512;
Ngi = 64;
rxData = rxData(1:end-Ngi);
rxData = reshape(rxData,blkSize,[]);

Remove the guard interval from each block. The resulting signal is a 448-by-Nblks
matrix, as expected for a time-domain DMG data field signal for SC PHY.

rxSym = rxData(Ngi+1:end,:);
size(rxSym)

ans = 1×2

 448 9

1 Functions — Alphabetical List

1-58

Recover the PSDU from the DMG data field.

rxBits = wlanDMGDataBitRecover(rxSym,nVar,cfgDMG);

Compare it against the original information bits.

disp(isequal(txBits,rxBits));

 1

Recover Data Field from DMG OFDM PHY

Recover data information bits of the DMG data field of the OFDM PHY.

Transmitter

Create the DMG configuration object with a modulation and coding scheme (MCS) for the
OFDM PHY.

cfgDMG = wlanDMGConfig('MCS',14);

Create the input sequence of data bits, specifying it as a column vector with
cfgDMG.PSDULength*8 elements. Generate the DMG transmission waveform.

txBits = randi([0 1],cfgDMG.PSDULength*8,1,'int8');
tx = wlanWaveformGenerator(txBits,cfgDMG);

Channel

Transmit the signal through a channel with no noise (zero noise variance).

rx = tx;
nVar = 0;

Receiver

Extract the data field, using the wlanFieldIndices function to generate the PPDU field
indices.

ind = wlanFieldIndices(cfgDMG);
rxData = rx(ind.DMGData(1):ind.DMGData(2));

Set the FFT length to 512 and the cyclic prefix length to 128 for the OFDM demodulation.

 wlanDMGDataBitRecover

1-59

Nfft = 512;
Ncp = 128;

Perform the OFDM demodulation. Reshape the received waveform to have the OFDM
symbols per column and remove cyclic prefix. Then, scale the sequence by the active tone
352 and extract the frequency domain symbols.

ofdmSym = reshape(rxData,Nfft+Ncp,[]);
dftSym = ofdmSym(Ncp+1:end,:);
dftSym = dftSym/(Nfft/sqrt(352));
freqSym = fftshift(fft(dftSym,[],1),1);

Extract data-carrying subcarriers and discard the pilots. Set the highest subcarrier index
to 177.

pilotSCIndex = [-150; -130; -110; -90; -70; -50; -30; -10; 10; 30; 50; 70; 90; 110; 130; 150];
noDataSCIndex = [pilotSCIndex; [-1; 0; 1]];
Nsr = 177;
dataSCIndex = setdiff((-Nsr:Nsr).',sort(noDataSCIndex));
rxSym = freqSym(dataSCIndex+(Nfft/2+1),:);

Recover the PSDU from the DMG data field. Assume a CSI estimation of all ones.

csi = ones(length(dataSCIndex),1);
rxBits = wlanDMGDataBitRecover(rxSym,nVar,csi,cfgDMG);

Compare it against the original information bits.

disp(isequal(txBits,rxBits));

 1

Recover Data Field from DMG Control PHY

Recover data information bits from the DMG data field of the control PHY.

Transmitter

Create the DMG configuration object with a modulation and coding scheme (MCS) for the
control PHY.

cfgDMG = wlanDMGConfig('MCS',0);

Create the input sequence of data bits, specifying it as a column vector with
cfgDMG.PSDULength*8 elements. Generate the DMG transmission waveform.

1 Functions — Alphabetical List

1-60

txBits = randi([0 1],cfgDMG.PSDULength*8,1,'int8');
tx = wlanWaveformGenerator(txBits,cfgDMG);

Channel

Transmit the signal through a channel with no noise (zero noise variance).

rx = tx;
nVar = 0;

Receiver

Extract the header and the data field by using the wlanFieldIndices function.

ind = wlanFieldIndices(cfgDMG);
rxSym = rx(ind.DMGHeader(1):ind.DMGData(2));

De-rotate the received signal by pi/2 and despread it with a spreading factor of 32. Use
the wlanGolaySequence function to generate the Golay sequence.

rxSym = rxSym.*exp(-1i*pi/2*(0:size(rxSym,1)-1).');
SF = 32;
Ga = wlanGolaySequence(SF);
rxSymDespread = (reshape(rxSym,SF,length(rxSym)/SF)'*Ga)/SF;

Recover the PSDU from the DMG data field.

rxBits = wlanDMGDataBitRecover(rxSymDespread,nVar,cfgDMG);

Compare it against the original information bits.

disp(isequal(txBits,rxBits));

 1

Input Arguments
rxDataSig — Received DMG data field signal
real or complex matrix

Received DMG data signal, specified as a real or complex matrix. The contents and size of
rxDataSig depend on the physical layer (PHY):

 wlanDMGDataBitRecover

1-61

• Single-carrier PHY — rxDataSig is the time-domain DMG data field signal, specified
as a 448-by-NBLKS matrix of real or complex values. The value 448 is the number of
symbols in a DMG data symbol and NBLKS is the number of DMG data blocks.

• OFDM PHY — rxDataSig is the demodulated DMG data field OFDM symbols,
specified as a 336-by-NSYM matrix of real or complex values. The value 336 is the
number of data subcarriers in the DMG data field and NSYM is the number of OFDM
symbols.

• Control PHY — rxDataSig is the time-domain signal containing the header and data
fields, specified as an NB-by-1 column vector of real or complex values, where NB is the
number of despread symbols.

Data Types: double
Complex Number Support: Yes

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.
Data Types: double

cfg — DMG PPDU configuration
wlanDMGConfig object

DMG PPDU configuration, specified as a wlanDMGConfig object. The
wlanDMGDataBitRecover function uses the following object properties:

MCS — Modulation and coding scheme index
0 (default) | integer from 0 to 24 | '9.1' | '12.1' | '12.2' | '12.3' | '12.4' | '12.5'
| '12.6'

Modulation and coding scheme index, specified as an integer from 0 to 24 or one of the
extended MCS indices: '9.1', '12.1', '12.2', '12.3', '12.4','12.5' or '12.6'.
An extended (non-integer) MCS index can only be specified as a character vector or string
scalar. An integer MCS index can be specified as a character vector, string scalar, or
integer. The MCS index indicates the modulation and coding scheme used in transmitting
the current packet.

• Modulation and coding scheme for control PHY

1 Functions — Alphabetical List

1-62

MCS Index Modulation Coding Rate Comment

0 DBPSK 1/2
Code rate and data
rate might be lower
due to codeword
shortening.

• Modulation and coding schemes for single-carrier modulation

MCS Index Modulation Coding Rate NCBPS Repetition
1

π/2 BPSK

1/2

1

2
2 1/2

1

3 5/8
4 3/4
5 13/16
6

π/2 QPSK

1/2

2
7 5/8
8 3/4
9 13/16

9.1 7/8
10

π/2 16QAM

1/2

4
11 5/8
12 3/4

12.1 3/4
12.2 7/8
12.3

64QAM

5/8

6
12.4 3/4
12.5 13/16
12.6 7/8

NCBPS is the number of coded bits per symbol.

• Modulation and coding schemes for OFDM modulation

 wlanDMGDataBitRecover

1-63

MCS Index Modulation Coding Rate NBPSC NCBPS NDBPS

13
SQPSK

1/2
1 336

168
14 5/8 210
15

QPSK
1/2

2 672
336

16 5/8 420
17 3/4 504
18

16QAM

1/2

4 1344

672
19 5/8 840
20 3/4 1008
21 13/16 1092
22

64QAM
5/8

6 2016
1260

23 3/4 1512
24 13/16 1638

NBPSC is the number of coded bits per single carrier.

NCBPS is the number of coded bits per symbol.

NDBPS is the number of data bits per symbol.

Data Types: double | char | string

TrainingLength — Number of training fields
0 (default) | integer from 0 to 64

Number of training fields, specified as an integer from 0 to 64. TrainingLength must be
a multiple of four.
Data Types: double

PacketType — Packet training field type
'TRN-R' (default) | 'TRN-T'

Packet training field type, specified as 'TRN-R' or 'TRN-T'. This property applies when
TrainingLength > 0.

'TRN-R' indicates that the packet includes or requests receive-training subfields and
'TRN-T' indicates that the packet includes transmit-training subfields.

1 Functions — Alphabetical List

1-64

Data Types: char | string

BeamTrackingRequest — Request beam tracking
false (default) | true

Request beam tracking, specified as a logical. Setting BeamTrackingRequest to true
indicates that beam tracking is requested. This property applies when
TrainingLength > 0.
Data Types: logical

TonePairingType — Tone pairing type
'Static' (default) | 'Dynamic'

Tone pairing type, specified as 'Static' or 'Dynamic'. This property applies when MCS
is from 13 to 17. Specifically, TonePairingType applies when using OFDM and either
SQPSK or QPSK modulation.
Data Types: char | string

DTPGroupPairIndex — DTP group pair index
42-by-1 integer vector

DTP group pair index, specified as a 42-by-1 integer vector for each pair. Element values
must be from 0 to 41, with no duplicates. This property applies when MCS is from 13 to 17
and when TonePairingType is 'Dynamic'.
Data Types: double

DTPIndicator — DTP update indicator
false (default) | true

DTP update indicator, specified as a logical. Toggle DTPIndicator between packets to
indicate that the dynamic tone pair mapping has been updated. This property applies
when MCS is from 13 to 17 and when TonePairingType is 'Dynamic'.
Data Types: logical

PSDULength — Number of bytes carried in the user payload
1000 (default) | integer from 1 to 262,143

Number of bytes carried in the user payload, specified as an integer from 1 to 262,143.
Data Types: double

 wlanDMGDataBitRecover

1-65

ScramblerInitialization — Initial scrambler state
2 (default) | integer from 1 to 127

Initial scrambler state of the data scrambler for each packet generated, specified as an
integer depending on the value of MCS:

• If MCS is 0, the initial scrambler state is limited to values from 1 to 15, corresponding
to a 4-by-1 column vector..

• If MCS is '9.1', '12.1', '12.2', '12.3', '12.4', '12.5' or '12.6', the valid
range of the initial scrambler is from 0 to 31, corresponding to a 5-by-1 column vector.

• For the remaining MCS values, the valid range is from 1 to 127, corresponding to a 7-
by-1 column vector.

The default value of 2 is the example state given in IEEE Std 802.11-2012, Amendment 3,
Section L.5.2.
Data Types: double | int8

AggregatedMPDU — MPDU aggregation indicator
false (default) | true

MPDU aggregation indicator, specified as a logical. Setting AggregatedMPDU to true
indicates that the current packet uses A-MPDU aggregation.
Data Types: logical

LastRSSI — Received power level of the last packet
0 (default) | integer from 0 to 15

Received power level of the last packet, specified as an integer from 0 to 15.

When transmitting a response frame immediately following a short interframe space
(SIFS) period, a DMG STA sets the LastRSSI as specified in IEEE 802.11ad-2012,
Section 9.3.2.3.3, to map to the TXVECTOR parameter LAST_RSSI of the response frame
to the power that was measured on the received packet, as reported in the RCPI field of
the frame that elicited the response frame. The encoding of the value for TXVECTOR is as
follows:

• Power values equal to or above –42 dBm are represented as the value 15.
• Power values between –68 dBm and –42 dBm are represented as round((power – (–71

dBm))/2).

1 Functions — Alphabetical List

1-66

• Power values less than or equal to –68 dBm are represented as the value of 1.
• For all other cases, the DMG STA shall set the TXVECTOR parameter LAST_RSSI of

the transmitted frame to 0.

The LAST_RSSI parameter in RXVECTOR maps to LastRSSI and indicates the value of
the LAST_RSSI field from the PCLP header of the received packet. The encoding of the
value for RXVECTOR is as follows:

• A value of 15 represents power greater than or equal to –42 dBm.
• Values from 2 to 14 represent power levels (–71+value×2) dBm.
• A value of 1 represents power less than or equal to –68 dBm.
• A value of 0 indicates that the previous packet was not received during the SIFS

period before the current transmission.

For more information, see IEEE 802.11ad-2012, Section 21.2.
Data Types: double

Turnaround — Turnaround indication
false (default) | true

Turnaround indication, specified as a logical. Setting Turnaround to true indicates that
the STA is required to listen for an incoming PPDU immediately following the
transmission of the PPDU. For more information, see IEEE 802.11ad-2012, Section
9.3.2.3.3.
Data Types: logical

csi — Channel State Information
real column vector

Channel state information, specified as a 336-by-1 real column vector. The value 336
specifies the number of data subcarriers in the DMG data field. csi is required only for
OFDM PHY.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

 wlanDMGDataBitRecover

1-67

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'MaximumLDPCIterationCount','12','EarlyTermination','false'
specifies a maximum of 12 decoding iterations for the LDPC and disables early
termination of LDPC decoding so that it completes the 12 iterations.

MaximumLDPCIterationCount — Maximum number of LDPC decoding iterations
12 | positive scalar integer

Maximum number of LDPC decoding iterations, specified as the comma-separated pair
consisting of 'MaximumLDPCIterationCount' and a positive integer.
Data Types: double

EarlyTermination — Enable early termination of LDPC decoding
false (default) | true

Enable early termination of LDPC decoding, specified as the comma-separated pair
consisting of 'EarlyTermination' and a logical.

• When set to false — LDPC decoding completes the number of iterations specified by
MaximumLDPCIterationCount, regardless of parity check status.

• When set to true — LDPC decoding terminates when all parity checks are satisfied.

Output Arguments
DataBits — Recovered information bits in the DMG data field
1 | 0 | column vector

Recovered information bits from the DMG data field, returned as a column vector of
length 8 × cfgDMG.PSDULength. See wlanDMGConfig for PSDULength details.
Data Types: int8

1 Functions — Alphabetical List

1-68

Definitions

DMG Data Field
The DMG format supports three physical layer (PHY) modulation schemes: control, single
carrier, and OFDM. The data field is variable in length. It serves the same function for the
three PHYs and carries the user data payload.

 wlanDMGDataBitRecover

1-69

For SC PHY, each block in the data field is 512-symbols long and with a guard interval
(GI) of 64 symbols with the Golay Sequence. For OFDM, each OFDM symbol in the data
field are 640 samples long and with a cyclic prefix (CP) of 128 samples to prevent
intersymbol interference.

1 Functions — Alphabetical List

1-70

IEEE 802.11ad-2012 specifies the common aspects of the DMG PPDU packet structure in
Section 21.3. The PHY modulation-specific aspects of the data field structure are specified
in these sections:

• The DMG control PHY packet structure is specified in Section 21.4.
• The DMG OFDM PHY packet structure is specified in Section 21.5.
• The DMG SC PHY packet structure is specified in Section 21.6.

References
[1] IEEE Std 802.11ad™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanDMGConfig | wlanDMGHeaderBitRecover

Introduced in R2017b

 wlanDMGDataBitRecover

1-71

wlanDMGHeaderBitRecover
Recover header bits from DMG header field

Syntax
[headerBits,failHCS] = wlanDMGHeaderBitRecover(rxHeader,noiseVarEst,
cfg)
headerBits = wlanDMGHeaderBitRecover(rxHeader,noiseVarEst,csi,cfg)
headerBits = wlanDMGHeaderBitRecover(___ ,Name,Value)

Description
[headerBits,failHCS] = wlanDMGHeaderBitRecover(rxHeader,noiseVarEst,
cfg) recovers the header information bits and tests the header check sequence (HCS)
given the header field from a DMG transmission (OFDM, single-carrier, or control PHY),
the noise variance estimate, and the DMG configuration object.

headerBits = wlanDMGHeaderBitRecover(rxHeader,noiseVarEst,csi,cfg)
uses the channel state information specified in csi to enhance the demapping of OFDM
subcarriers.

headerBits = wlanDMGHeaderBitRecover(___ ,Name,Value) specifies additional
options using name-value pair arguments, using the inputs from preceding syntaxes.
When a name-value pair is not specified, its default value is used.

Examples

Recover Header Field from DMG SC PHY

Recover header bits from the DMG header field of the single-carrier (SC) PHY.

1 Functions — Alphabetical List

1-72

Transmitter

Create the DMG configuration object with a modulation and coding scheme (MCS) for the
SC PHY.

cfgDMG = wlanDMGConfig('MCS',10);

Create the input sequence of bits, specifying it as a column vector with
cfgDMG.PSDULength*8 elements. Generate the DMG transmission waveform.

txBits = randi([0 1],cfgDMG.PSDULength*8,1,'int8');
tx = wlanWaveformGenerator(txBits,cfgDMG);

AWGN Channel

Set an SNR of 10 dB, calculate the noise power (noise variance), and add AWGN to the
transmission waveform by using the awgn function.

SNR = 10;
nVar = 10^(-SNR/10);
rx = awgn(tx,SNR);

Receiver

Extract the header field by using the wlanFieldIndices function.

ind = wlanFieldIndices(cfgDMG);
rxHeader = rx(ind.DMGHeader(1):ind.DMGHeader(2));

Reshape the received waveform into blocks. Set the data block size to 512 and the guard
interval length to 64. Remove the last guard interval from the received header waveform.
The resulting signal is a 448-by-2 matrix.

blkSize = 512;
rxHeader = reshape(rxHeader,blkSize,[]);
Ngi = 64;
rxSym = rxHeader(Ngi+1:end,:);
size(rxSym)

ans = 1×2

 448 2

Recover header bits from DMG header field.

 wlanDMGHeaderBitRecover

1-73

[rxBits,failHCS] = wlanDMGHeaderBitRecover(rxSym,nVar,cfgDMG);

Display the HCS check on the recovered header bits.

disp(failHCS);

 0

Recover Header Field from DMG OFDM PHY

Recover header information bits from the DMG header field of the OFDM PHY.

Transmitter

Create the DMG configuration object with a modulation and coding scheme (MCS) for the
OFDM PHY.

cfgDMG = wlanDMGConfig('MCS',14);

Create the input sequence of data bits, specifying it as a column vector with
cfgDMG.PSDULength*8 elements. Generate the DMG transmission waveform.

txBits = randi([0 1],cfgDMG.PSDULength*8,1,'int8');
tx = wlanWaveformGenerator(txBits,cfgDMG);

Channel

Transmit the signal through a channel with no noise (zero noise variance).

rx = tx;
nVar = 0;

Receiver

Extract data field using the wlanFieldIndices function.

ind = wlanFieldIndices(cfgDMG);
rxHeader = rx(ind.DMGHeader(1):ind.DMGHeader(2));

Set the FFT length to 512 and the cyclic prefix length to 128 for the OFDM demodulation.

Nfft = 512;
Ncp = 128;

1 Functions — Alphabetical List

1-74

Perform the OFDM demodulation. Remove cyclic prefix, scale the sequence by the active
tone 352, and extract the frequency domain symbols.

dftSym = rxHeader(Ncp+1:end,:);
dftSym = dftSym/(Nfft/sqrt(352));
freqSym = fftshift(fft(dftSym,[],1),1);

Extract data-carrying subcarriers and discard the pilots. Set the highest subcarrier index
to 177.

pilotSCIndex = [-150; -130; -110; -90; -70; -50; -30; -10; 10; 30; 50; 70; 90; 110; 130; 150];
noDataSCIndex = [pilotSCIndex; [-1; 0; 1]];
Nsr = 177;
dataSCIndex = setdiff((-Nsr:Nsr).',sort(noDataSCIndex));
rxSym = freqSym(dataSCIndex+(Nfft/2+1),:);

Recover the header bits from the DMG header field. Assume a CSI estimation of all ones.

csi = ones(length(dataSCIndex),1);
[rxBits,failHCS] = wlanDMGHeaderBitRecover(rxSym,nVar,csi,cfgDMG);

Display the HCS check on the recovered header bits.

disp(failHCS);

 0

Recover Header Field from DMG Control PHY

Recover header information bits of the DMG header field from the control PHY.

Transmitter

Create the DMG configuration object with a modulation and coding scheme (MCS) for the
control PHY.

cfgDMG = wlanDMGConfig('MCS',0);

Create the input sequence of data bits, specifying it as a column vector with
cfgDMG.PSDULength*8 elements. Generate the DMG transmission waveform.

txBits = randi([0 1],cfgDMG.PSDULength*8,1,'int8');
tx = wlanWaveformGenerator(txBits,cfgDMG);

 wlanDMGHeaderBitRecover

1-75

Channel

Transmit the signal through a channel with no noise (zero noise variance).

rx = tx;
nVar = 0;

Receiver

Extract the header field by using the wlanFieldIndices function.

ind = wlanFieldIndices(cfgDMG);
rxHeader = rx(ind.DMGHeader(1):ind.DMGHeader(2));

De-rotate the received signal by pi/2 and despread it with a spreading factor of 32. Use
the wlanGolaySequence function to generate the Golay sequence.

rxSym = rxHeader.*exp(-1i*pi/2*(0:size(rxHeader,1)-1).');
SF = 32;
Ga = wlanGolaySequence(SF);
rxDespread = reshape(rxSym,SF,length(rxSym)/SF)'*Ga/SF;

Recover the header bits from the DMG header field.

[rxBits,failHCS] = wlanDMGHeaderBitRecover(rxDespread,nVar,cfgDMG);

Display the HCS check on the recovered header bits.

disp(failHCS);

 0

Input Arguments
rxHeader — Received DMG header field signal
matrix

Received DMG header field signal, specified as a real or complex matrix. The contents
and size of rxHeader depends on the physical layer (PHY):

• Single-Carrier PHY — rxHeader is the time-domain DMG header field signal,
specified as a 448-by-NBLKS matrix of real or complex values. The value 448 is the
number of symbols in a DMG header symbol and NBLKS is the number of DMG header
blocks.

1 Functions — Alphabetical List

1-76

• OFDM PHY — rxHeader is the frequency-domain signal, specified as a 336-by-1
column vector of real or complex values. The value 336 is the number of data
subcarriers in the DMG header field.

• Control PHY — rxHeader is the time-domain signal containing the header field,
specified as an NB-by-1 column vector of real or complex values. NB is the number of
despread symbols.

Data Types: double
Complex Number Support: Yes

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.
Data Types: double

cfg — DMG PPDU configuration
wlanDMGConfig object

DMG PPDU configuration, specified as a wlanDMGConfig object. The
wlanDMGDataBitRecover function uses the following object properties:

MCS — Modulation and coding scheme index
0 (default) | integer from 0 to 24 | '9.1' | '12.1' | '12.2' | '12.3' | '12.4' | '12.5'
| '12.6'

Modulation and coding scheme index, specified as an integer from 0 to 24 or one of the
extended MCS indices: '9.1', '12.1', '12.2', '12.3', '12.4','12.5' or '12.6'.
An extended (non-integer) MCS index can only be specified as a character vector or string
scalar. An integer MCS index can be specified as a character vector, string scalar, or
integer. The MCS index indicates the modulation and coding scheme used in transmitting
the current packet.

• Modulation and coding scheme for control PHY

MCS Index Modulation Coding Rate Comment

0 DBPSK 1/2
Code rate and data
rate might be lower
due to codeword
shortening.

 wlanDMGHeaderBitRecover

1-77

• Modulation and coding schemes for single-carrier modulation

MCS Index Modulation Coding Rate NCBPS Repetition
1

π/2 BPSK

1/2

1

2
2 1/2

1

3 5/8
4 3/4
5 13/16
6

π/2 QPSK

1/2

2
7 5/8
8 3/4
9 13/16

9.1 7/8
10

π/2 16QAM

1/2

4
11 5/8
12 3/4

12.1 3/4
12.2 7/8
12.3

64QAM

5/8

6
12.4 3/4
12.5 13/16
12.6 7/8

NCBPS is the number of coded bits per symbol.

• Modulation and coding schemes for OFDM modulation

MCS Index Modulation Coding Rate NBPSC NCBPS NDBPS

13
SQPSK

1/2
1 336

168
14 5/8 210
15

QPSK
1/2

2 672
336

16 5/8 420

1 Functions — Alphabetical List

1-78

MCS Index Modulation Coding Rate NBPSC NCBPS NDBPS

17 3/4 504
18

16QAM

1/2

4 1344

672
19 5/8 840
20 3/4 1008
21 13/16 1092
22

64QAM
5/8

6 2016
1260

23 3/4 1512
24 13/16 1638

NBPSC is the number of coded bits per single carrier.

NCBPS is the number of coded bits per symbol.

NDBPS is the number of data bits per symbol.

Data Types: double | char | string

TrainingLength — Number of training fields
0 (default) | integer from 0 to 64

Number of training fields, specified as an integer from 0 to 64. TrainingLength must be
a multiple of four.
Data Types: double

PacketType — Packet training field type
'TRN-R' (default) | 'TRN-T'

Packet training field type, specified as 'TRN-R' or 'TRN-T'. This property applies when
TrainingLength > 0.

'TRN-R' indicates that the packet includes or requests receive-training subfields and
'TRN-T' indicates that the packet includes transmit-training subfields.
Data Types: char | string

BeamTrackingRequest — Request beam tracking
false (default) | true

 wlanDMGHeaderBitRecover

1-79

Request beam tracking, specified as a logical. Setting BeamTrackingRequest to true
indicates that beam tracking is requested. This property applies when
TrainingLength > 0.
Data Types: logical

TonePairingType — Tone pairing type
'Static' (default) | 'Dynamic'

Tone pairing type, specified as 'Static' or 'Dynamic'. This property applies when MCS
is from 13 to 17. Specifically, TonePairingType applies when using OFDM and either
SQPSK or QPSK modulation.
Data Types: char | string

DTPGroupPairIndex — DTP group pair index
42-by-1 integer vector

DTP group pair index, specified as a 42-by-1 integer vector for each pair. Element values
must be from 0 to 41, with no duplicates. This property applies when MCS is from 13 to 17
and when TonePairingType is 'Dynamic'.
Data Types: double

DTPIndicator — DTP update indicator
false (default) | true

DTP update indicator, specified as a logical. Toggle DTPIndicator between packets to
indicate that the dynamic tone pair mapping has been updated. This property applies
when MCS is from 13 to 17 and when TonePairingType is 'Dynamic'.
Data Types: logical

PSDULength — Number of bytes carried in the user payload
1000 (default) | integer from 1 to 262,143

Number of bytes carried in the user payload, specified as an integer from 1 to 262,143.
Data Types: double

ScramblerInitialization — Initial scrambler state
2 (default) | integer from 1 to 127

Initial scrambler state of the data scrambler for each packet generated, specified as an
integer depending on the value of MCS:

1 Functions — Alphabetical List

1-80

• If MCS is 0, the initial scrambler state is limited to values from 1 to 15, corresponding
to a 4-by-1 column vector..

• If MCS is '9.1', '12.1', '12.2', '12.3', '12.4', '12.5' or '12.6', the valid
range of the initial scrambler is from 0 to 31, corresponding to a 5-by-1 column vector.

• For the remaining MCS values, the valid range is from 1 to 127, corresponding to a 7-
by-1 column vector.

The default value of 2 is the example state given in IEEE Std 802.11-2012, Amendment 3,
Section L.5.2.
Data Types: double | int8

AggregatedMPDU — MPDU aggregation indicator
false (default) | true

MPDU aggregation indicator, specified as a logical. Setting AggregatedMPDU to true
indicates that the current packet uses A-MPDU aggregation.
Data Types: logical

LastRSSI — Received power level of the last packet
0 (default) | integer from 0 to 15

Received power level of the last packet, specified as an integer from 0 to 15.

When transmitting a response frame immediately following a short interframe space
(SIFS) period, a DMG STA sets the LastRSSI as specified in IEEE 802.11ad-2012,
Section 9.3.2.3.3, to map to the TXVECTOR parameter LAST_RSSI of the response frame
to the power that was measured on the received packet, as reported in the RCPI field of
the frame that elicited the response frame. The encoding of the value for TXVECTOR is as
follows:

• Power values equal to or above –42 dBm are represented as the value 15.
• Power values between –68 dBm and –42 dBm are represented as round((power – (–71

dBm))/2).
• Power values less than or equal to –68 dBm are represented as the value of 1.
• For all other cases, the DMG STA shall set the TXVECTOR parameter LAST_RSSI of

the transmitted frame to 0.

 wlanDMGHeaderBitRecover

1-81

The LAST_RSSI parameter in RXVECTOR maps to LastRSSI and indicates the value of
the LAST_RSSI field from the PCLP header of the received packet. The encoding of the
value for RXVECTOR is as follows:

• A value of 15 represents power greater than or equal to –42 dBm.
• Values from 2 to 14 represent power levels (–71+value×2) dBm.
• A value of 1 represents power less than or equal to –68 dBm.
• A value of 0 indicates that the previous packet was not received during the SIFS

period before the current transmission.

For more information, see IEEE 802.11ad-2012, Section 21.2.
Data Types: double

Turnaround — Turnaround indication
false (default) | true

Turnaround indication, specified as a logical. Setting Turnaround to true indicates that
the STA is required to listen for an incoming PPDU immediately following the
transmission of the PPDU. For more information, see IEEE 802.11ad-2012, Section
9.3.2.3.3.
Data Types: logical

csi — Channel State Information
real column vector

Channel state information, specified as a 336-by-1 real column vector. The value 336
specifies the number of data subcarriers in the DMG data field. csi is required only for
OFDM PHY.
Data Types: double

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

1 Functions — Alphabetical List

1-82

Example: 'MaximumLDPCIterationCount','12','EarlyTermination','false'
specifies a maximum of 12 decoding iterations for the LDPC and disables early
termination of LDPC decoding so that it completes the 12 iterations.

MaximumLDPCIterationCount — Maximum number of LDPC decoding iterations
12 | positive scalar integer

Maximum number of LDPC decoding iterations, specified as the comma-separated pair
consisting of 'MaximumLDPCIterationCount' and a positive integer.
Data Types: double

EarlyTermination — Enable early termination of LDPC decoding
false (default) | true

Enable early termination of LDPC decoding, specified as the comma-separated pair
consisting of 'EarlyTermination' and a logical.

• When set to false — LDPC decoding completes the number of iterations specified by
MaximumLDPCIterationCount, regardless of parity check status.

• When set to true — LDPC decoding terminates when all parity checks are satisfied.

Output Arguments
headerBits — Recovered header information bits
1 | 0 | column vector

Recovered header information bits, returned as a column vector of 64 elements for OFDM
and single-carrier PHYs and a column vector of 40 elements for control PHYs.
Data Types: int8

failHCS — HCS check
false | true

HCS check, returned as a logical. When headerBits fails the HCS check, failHCS is
true.
Data Types: logical

 wlanDMGHeaderBitRecover

1-83

Definitions

DMG Header Field
In the DMG format, the header field is different in size and content for every supported
physical layer (PHY) modulation scheme. This field contains additional important
information for the receiver.

The total size of the header field is 40 bits for control PHYs and 64 bits for SC and OFDM
PHYs.

The most important fields common for the three PHY modes are:

• Scrambler initialization — Specifies the initial state for the scrambler.
• MCS — Specifies the modulation and coding scheme used in the data field. It is not

present in control PHY.

1 Functions — Alphabetical List

1-84

• Length (data) — Specifies the length of the data field.
• Packet type — Specifies whether the beamforming training field is intended for the

receiver or the transmitter.
• Training length — Specifies whether a beamforming training field is used and if so, its

length.
• HCS — Provides a checksum per CRC for the header.

IEEE 802.11ad-2012 specifies the detailed aspects of the DMG header field structure. In
particular, the PHY modulation-specific aspects of the header field are specified in these
sections:

• The DMG control PHY header structure is specified in Section 21.4.3.2.
• The DMG OFDM PHY header structure is specified in Section 21.5.3.1.
• The DMG SC PHY header structure is specified in Section 21.6.3.1.

References
[1] IEEE Std 802.11ad™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanDMGConfig | wlanDMGDataBitRecover

 wlanDMGHeaderBitRecover

1-85

Introduced in R2017b

1 Functions — Alphabetical List

1-86

wlanFineCFOEstimate
Fine estimate of carrier frequency offset

Syntax
fOffset = wlanFineCFOEstimate(rxSig,cbw)
fOffset = wlanFineCFOEstimate(rxSig,cbw,corrOffset)

Description
fOffset = wlanFineCFOEstimate(rxSig,cbw) returns a fine estimate of the carrier
frequency offset (CFO) given received time-domain “L-LTF” on page 1-922 samples
rxSig and channel bandwidth cbw.

fOffset = wlanFineCFOEstimate(rxSig,cbw,corrOffset) returns the estimated
frequency offset given correlation offset corrOffset.

Examples

Fine Estimate of Carrier Frequency Offset

Create non-HT configuration object.

nht = wlanNonHTConfig;

Generate a non-HT waveform.

txSig = wlanWaveformGenerator([1;0;0;1],nht);

Create a phase and frequency offset object and introduce a 2 Hz frequency offset.

2. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

 wlanFineCFOEstimate

1-87

pfOffset = comm.PhaseFrequencyOffset('SampleRate',20e6,'FrequencyOffset',2);
rxSig = pfOffset(txSig);

Extract the L-LTF and estimate the frequency offset.

ind = wlanFieldIndices(nht,'L-LTF');
rxlltf = rxSig(ind(1):ind(2),:);
freqOffsetEst = wlanFineCFOEstimate(rxlltf,'CBW20')

freqOffsetEst = 2.0000

Estimate and Correct CFO for VHT Waveform

Estimate the frequency offset for a VHT signal passing through a noisy, TGac channel.
Correct for the frequency offset.

Create a VHT configuration object and create the L-LTF.

vht = wlanVHTConfig;
txltf = wlanLLTF(vht);

Set the sample rate to correspond to the default bandwidth of the VHT configuration
object.

fs = 80e6;

Create TGac and thermal noise channel objects. Set the noise figure of the AWGN channel
to 10 dB.

tgacChan = wlanTGacChannel('SampleRate',fs, ...
 'ChannelBandwidth',vht.ChannelBandwidth, ...
 'DelayProfile','Model-C','LargeScaleFadingEffect','Pathloss');

noise = comm.ThermalNoise('SampleRate',fs, ...
 'NoiseMethod','Noise figure', ...
 'NoiseFigure',10);

Pass the L-LTF through the noisy TGac channel.

rxltfNoNoise = tgacChan(txltf);
rxltf = noise(rxltfNoNoise);

Create a phase and frequency offset object and introduce a 25 Hz frequency offset.

1 Functions — Alphabetical List

1-88

pfoffset = comm.PhaseFrequencyOffset('SampleRate',fs,'FrequencyOffsetSource','Input port');
rxltf = pfoffset(rxltf,25);

Perform a fine estimate the frequency offset using a correlation offset of 0.6. Your results
may differ slightly.

fOffsetEst = wlanFineCFOEstimate(rxltf,vht.ChannelBandwidth,0.6)

fOffsetEst = 28.0773

Correct for the estimated frequency offset.

rxltfCorr = pfoffset(rxltf,-fOffsetEst);

Estimate the frequency offset of the corrected signal.

fOffsetEstCorr = wlanFineCFOEstimate(rxltfCorr,vht.ChannelBandwidth,0.6)

fOffsetEstCorr = 2.5029e-13

The corrected signal has negligible frequency offset.

Two-Step CFO Estimation and Correction

Estimate and correct for a significant carrier frequency offset in two steps. Estimate the
frequency offset after all corrections have been made.

Set the channel bandwidth and the corresponding sample rate.

cbw = 'CBW40';
fs = 40e6;

Coarse Frequency Correction

Generate an HT format configuration object.

cfg = wlanHTConfig('ChannelBandwidth',cbw);

Generate the transmit waveform.

txSig = wlanWaveformGenerator([1;0;0;1],cfg);

 wlanFineCFOEstimate

1-89

Create TGn and thermal noise channel objects. Set the noise figure of the receiver to 9
dB.

tgnChan = wlanTGnChannel('SampleRate',fs,'DelayProfile','Model-D', ...
 'LargeScaleFadingEffect','Pathloss and shadowing');
noise = comm.ThermalNoise('SampleRate',fs, ...
 'NoiseMethod','Noise figure', ...
 'NoiseFigure',9);

Pass the waveform through the TGn channel and add noise.

rxSigNoNoise = tgnChan(txSig);
rxSig = noise(rxSigNoNoise);

Create a phase and frequency offset object to introduce a carrier frequency offset.
Introduce a 2 kHz frequency offset.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',fs,'FrequencyOffsetSource','Input port');
rxSig = pfOffset(rxSig,2e3);

Extract the L-STF signal for coarse frequency offset estimation.

istf = wlanFieldIndices(cfg,'L-STF');
rxstf = rxSig(istf(1):istf(2),:);

Perform a coarse estimate of the frequency offset. Your results may differ.

foffset1 = wlanCoarseCFOEstimate(rxstf,cbw)

foffset1 = 2.0221e+03

Correct for the estimated offset.

rxSigCorr1 = pfOffset(rxSig,-foffset1);

Fine Frequency Correction

Extract the L-LTF signal for fine offset estimation.

iltf = wlanFieldIndices(cfg,'L-LTF');
rxltf1 = rxSigCorr1(iltf(1):iltf(2),:);

Perform a fine estimate of the corrected signal.

foffset2 = wlanFineCFOEstimate(rxltf1,cbw)

1 Functions — Alphabetical List

1-90

foffset2 = -11.0795

The corrected signal offset is reduced from 2000 Hz to approximately 7 Hz.

Correct for the remaining offset.

rxSigCorr2 = pfOffset(rxSigCorr1,-foffset2);

Determine the frequency offset of the twice corrected signal.

rxltf2 = rxSigCorr2(iltf(1):iltf(2),:);
deltaFreq = wlanFineCFOEstimate(rxltf2,cbw)

deltaFreq = -2.0374e-11

The CFO is zero.

Input Arguments
rxSig — Received signal
matrix

Received signal containing an L-LTF, specified as an NS-by-NR matrix. NS is the number of
samples in the L-LTF and NR is the number of receive antennas.

Note If the number of samples in rxSig is greater than the number of samples in the L-
LTF, the trailing samples are not used to estimate the carrier frequency offset.

Data Types: double

cbw — Channel bandwidth
'CBW5' | 'CBW10' | 'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth in MHz, specified as 'CBW5', 'CBW10', 'CBW20', 'CBW40',
'CBW80', or 'CBW160'.
Data Types: char | string

corrOffset — Correlation offset
0.75 (default) | real scalar from 0 to 1

 wlanFineCFOEstimate

1-91

Correlation offset as a fraction of the L-LTF cyclic prefix, specified as a real scalar from 0
to 1. The duration of the short training symbol varies with bandwidth. For more
information, see “L-LTF” on page 1-92.
Data Types: double

Output Arguments
fOffset — Frequency offset
real scalar

Frequency offset in Hz, returned as a real scalar.
Data Types: double

Definitions

L-LTF
The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP legacy
preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

Channel estimation, fine frequency offset estimation, and fine symbol timing offset
estimation rely on the L-LTF.

1 Functions — Alphabetical List

1-92

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The CP consists of the second half of the long training symbol.

The L-LTF duration varies with channel bandwidth.

Channel
Bandwidth
(MHz)

Subcarrier
Frequency
Spacing, ΔF
(kHz)

Fast Fourier
Transform
(FFT) Period
(TFFT = 1 / ΔF)

Cyclic Prefix or
Training
Symbol Guard
Interval (GI2)
Duration
(TGI2 = TFFT / 2)

L-LTF Duration
(TLONG = TGI2 +
2 × TFFT)

20, 40, 80, and
160

312.5 3.2 μs 1.6 μs 8 μs

10 156.25 6.4 μs 3.2 μs 16 μs
5 78.125 12.8 μs 6.4 μs 32 μs

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[2] Li, Jian. “Carrier Frequency Offset Estimation for OFDM-Based WLANs.” IEEE Signal
Processing Letters. Vol. 8, Issue 3, Mar 2001, pp. 80–82.

 wlanFineCFOEstimate

1-93

[3] Moose, P. H. “A technique for orthogonal frequency division multiplexing frequency
offset correction.” IEEE Transactions on Communications. Vol. 42, Issue 10, Oct
1994, pp. 2908–2914.

[4] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac.
2nd Edition. United Kingdom: Cambridge University Press, 2013.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
comm.PhaseFrequencyOffset | wlanCoarseCFOEstimate | wlanLLTF

Introduced in R2015b

1 Functions — Alphabetical List

1-94

wlanLLTFChannelEstimate
Channel estimation using L-LTF

Syntax
chEst = wlanLLTFChannelEstimate(demodSig,cfg)
chEst = wlanLLTFChannelEstimate(demodSig,cbw)
chEst = wlanLLTFChannelEstimate(___ ,span)

Description
chEst = wlanLLTFChannelEstimate(demodSig,cfg) returns the channel estimate
between the transmitter and all receive antennas using the demodulated “L-LTF” on page
1-1053, demodSig, given the parameters specified in configuration object cfg.

chEst = wlanLLTFChannelEstimate(demodSig,cbw) returns the channel estimate
given channel bandwidth cbw. The channel bandwidth can be used instead of the
configuration object.

chEst = wlanLLTFChannelEstimate(___ ,span) returns the channel estimate and
performs frequency smoothing over the specified filter span. For more information, see
“Frequency Smoothing” on page 1-106.

This syntax supports input options from prior syntaxes.

Examples

Estimate SISO Channel Using L-LTF

Create VHT format configuration object. Generate a time-domain waveform for an
802.11ac VHT packet.

3. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

 wlanLLTFChannelEstimate

1-95

vht = wlanVHTConfig;
txWaveform = wlanWaveformGenerator([1;0;0;1],vht);

Multiply the transmitted VHT signal by -0.1 + 0.5i and pass it through an AWGN channel
with a 30 dB signal-to-noise ratio.

rxWaveform = awgn(txWaveform*(-0.1+0.5i),30);

Extract the L-LTF field indices and demodulate the L-LTF. Perform channel estimation
without frequency smoothing.

idxLLTF = wlanFieldIndices(vht,'L-LTF');
demodSig = wlanLLTFDemodulate(rxWaveform(idxLLTF(1):idxLLTF(2),:),vht);

est = wlanLLTFChannelEstimate(demodSig,vht);

Plot the channel estimate.

scatterplot(est)
grid

1 Functions — Alphabetical List

1-96

The channel estimate matches the complex channel multiplier.

L-LTF Channel Estimation After TGn Channel

Generate a time domain waveform for an 802.11n HT packet, pass it through a TGn
fading channel and perform L-LTF channel estimation. Trailing zeros are added to the
waveform to allow for TGn channel delay.

Create the HT packet configuration and transmit waveform.

cfgHT = wlanHTConfig;
txWaveform = wlanWaveformGenerator([1;0;0;1],cfgHT);

 wlanLLTFChannelEstimate

1-97

Configure a TGn channel with 20 MHz bandwidth.

tgnChannel = wlanTGnChannel;
tgnChannel.SampleRate = 20e6;

Pass the waveform through the TGn channel, adding trailing zeros to allow for channel
delay.

rxWaveform = tgnChannel([txWaveform; zeros(15,1)]);

Skip the first four samples to synchronize the received waveform for channel delay.

rxWaveform = rxWaveform(5:end,:);

Extract the L-LTF and perform channel estimation.

idnLLTF = wlanFieldIndices(cfgHT,'L-LTF');
sym = wlanLLTFDemodulate(rxWaveform(idnLLTF(1):idnLLTF(2),:),cfgHT);
est = wlanLLTFChannelEstimate(sym,cfgHT);

Estimate 80 MHz SISO Channel Using L-LTF

Create a VHT format configuration object. Using these objects, generate a time-domain
waveform for an 802.11ac VHT packet.

vht = wlanVHTConfig('ChannelBandwidth','CBW80');
txWaveform = wlanWaveformGenerator([1;0;0;1],vht);

Multiply the transmitted VHT signal by -0.4 + 0.3i and pass it through an AWGN channel.

rxWaveform = awgn(txWaveform*(-0.4+0.3i),30);

Specify the channel bandwidth for demodulation and channel estimation. Extract the L-
LTF field indices, demodulate the L-LTF, and perform channel estimation without
frequency smoothing.

chanBW = 'CBW80';
idxLLTF = wlanFieldIndices(vht,'L-LTF');
demodSig = wlanLLTFDemodulate(rxWaveform(idxLLTF(1):idxLLTF(2),:),chanBW);
est = wlanLLTFChannelEstimate(demodSig,chanBW);

Plot the channel estimate.

1 Functions — Alphabetical List

1-98

scatterplot(est)
grid

The channel estimate matches the complex channel multiplier.

Estimate SISO Channel Using L-LTF and Smoothing Filter

Create a VHT format configuration object. Generate a time-domain waveform for an
802.11ac VHT packet.

vht = wlanVHTConfig;
txWaveform = wlanWaveformGenerator([1;0;0;1],vht);

 wlanLLTFChannelEstimate

1-99

Multiply the transmitted VHT signal by 0.2 - 0.6i and pass it through an AWGN channel
having a 10 dB SNR.

rxWaveform = awgn(txWaveform*complex(0.2,-0.6),10);

Extract the L-LTF from the received waveform. Demodulate the L-LTF.

idxLLTF = wlanFieldIndices(vht, 'L-LTF');
lltfDemodSig = wlanLLTFDemodulate(rxWaveform(idxLLTF(1):idxLLTF(2),:),vht);

Use the demodulated L-LTF signal to generate the channel estimate.

est = wlanLLTFChannelEstimate(lltfDemodSig,vht);

Plot the channel estimate.

scatterplot(est)
grid

1 Functions — Alphabetical List

1-100

The channel estimate is noisy, which may lead to inaccurate data recovery.

Estimate the channel again with the filter span set to 11.

est = wlanLLTFChannelEstimate(lltfDemodSig,vht,11);
scatterplot(est)
grid

 wlanLLTFChannelEstimate

1-101

The filtering provides a better channel estimate.

Estimate Channel with L-LTF and Recover VHT-SIG-A

Create a VHT format configuration object. Generate L-LTF and VHT-SIG-A fields.

vht = wlanVHTConfig;
txLLTF = wlanLLTF(vht);
txSig = wlanVHTSIGA(vht);

Create a TGac channel for an 80 MHz bandwidth and a Model-A delay profile. Pass the
transmitted L-LTF and VHT-SIG-A signals through the channel.

1 Functions — Alphabetical List

1-102

tgacChan = wlanTGacChannel('SampleRate',80e6,'ChannelBandwidth','CBW80', ...
 'DelayProfile','Model-A');

rxLLTFNoNoise = tgacChan(txLLTF);
rxSigNoNoise = tgacChan(txSig);

Create an AWGN noise channel with an SNR = 15 dB. Add the AWGN noise to L-LTF and
VHT-SIG-A signals.

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)', ...
 'SNR',15);

rxLLTF = chNoise(rxLLTFNoNoise);
rxSig = chNoise(rxSigNoNoise);

Create an AWGN channel having a noise variance corresponding to a 9 dB noise figure
receiver. Pass the faded signals through the AWGN channel.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(80e6) + 9)/10);
awgnChan = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

rxLLTF = awgnChan(rxLLTF);
rxSig = awgnChan(rxSig);

Demodulate the received L-LTF.

demodLLTF = wlanLLTFDemodulate(rxLLTF,vht);

Estimate the channel using the demodulated L-LTF.

chEst = wlanLLTFChannelEstimate(demodLLTF,vht);

Recover the VHT-SIG-A signal and verify that there was no CRC failure.

[recBits,crcFail] = wlanVHTSIGARecover(rxSig,chEst,nVar,'CBW80');
crcFail

crcFail = logical
 0

 wlanLLTFChannelEstimate

1-103

Input Arguments
demodSig — Demodulated L-LTF OFDM symbols
3-D array

Demodulated L-LTF OFDM symbols, specified as an NST-by-NSYM-by-NR array. NST is the
number of occupied subcarriers. NSYM is the number of demodulated L-LTF symbols (one
or two). NR is the number of receive antennas. Each column of the 3-D array is a
demodulated L-LTF OFDM symbol. If you specify two L-LTF symbols,
wlanLLTFChannelEstimate averages the channel estimate over both symbols.
Data Types: double
Complex Number Support: Yes

cfg — Format configuration
wlanVHTConfig object | wlanHTConfig object | wlanNonHTConfig object

Format configuration, specified as one of these objects:

• wlanVHTConfig for VHT format
• wlanHTConfig for HT format
• wlanNonHTConfig for non-HT format

The wlanLLTFChannelEstimate function uses the ChannelBandwidth property of
cfg.

cbw — Channel bandwidth
'CBW5' | 'CBW10' | 'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth of the packet transmission waveform, specified as:

PPDU Transmission Format Valid Channel Bandwidth
VHT 'CBW20', 'CBW40', 'CBW80' (default), or

'CBW160'
HT 'CBW20' (default) or 'CBW40'
non-HT 'CBW5', 'CBW10', or 'CBW20' (default)

Data Types: char | string

span — Filter span
positive odd integer

1 Functions — Alphabetical List

1-104

Filter span of the frequency smoothing filter, specified as a positive odd integer and
expressed as a number of subcarriers. Frequency smoothing is applied only when span is
specified and is greater than one. See “Frequency Smoothing” on page 1-106.

Note Frequency smoothing is recommended only when a single transmit antenna is used.

Data Types: double

Output Arguments
chEst — Channel estimate
3-D array

Channel estimate containing data and pilot subcarriers, returned as an NST-by-1-by-NR
array. NST is the number of occupied subcarriers. The value of 1 corresponds to the single
transmitted stream in the L-LTF. NR is the number of receive antennas.

Definitions

L-LTF
The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP legacy
preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

 wlanLLTFChannelEstimate

1-105

Channel estimation, fine frequency offset estimation, and fine symbol timing offset
estimation rely on the L-LTF.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The CP consists of the second half of the long training symbol.

The L-LTF duration varies with channel bandwidth.

Channel
Bandwidth
(MHz)

Subcarrier
Frequency
Spacing, ΔF
(kHz)

Fast Fourier
Transform
(FFT) Period
(TFFT = 1 / ΔF)

Cyclic Prefix or
Training
Symbol Guard
Interval (GI2)
Duration
(TGI2 = TFFT / 2)

L-LTF Duration
(TLONG = TGI2 +
2 × TFFT)

20, 40, 80, and
160

312.5 3.2 μs 1.6 μs 8 μs

10 156.25 6.4 μs 3.2 μs 16 μs
5 78.125 12.8 μs 6.4 μs 32 μs

Frequency Smoothing
Frequency smoothing can improve channel estimation for highly correlated channels by
averaging out white noise.

Frequency smoothing is recommended only for cases in which a single transmit antenna
is used. Frequency smoothing consists of applying a moving-average filter that spans

1 Functions — Alphabetical List

1-106

multiple adjacent subcarriers. Channel conditions dictate whether frequency smoothing is
beneficial.

• If adjacent subcarriers are highly correlated, frequency smoothing results in
significant noise reduction.

• In a highly frequency-selective channel, smoothing can degrade the quality of the
channel estimate.

References
[1] Van de Beek, J.-J., O. Edfors, M. Sandell, S. K. Wilson, and P. O. Borjesson. “On Channel

Estimation in OFDM Systems." Vehicular Technology Conference, IEEE 45th,
Volume 2, IEEE, 1995.

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanHTLTFChannelEstimate | wlanLLTFDemodulate |
wlanNonHTConfig | wlanVHTConfig | wlanVHTLTFChannelEstimate

Introduced in R2015b

 wlanLLTFChannelEstimate

1-107

wlanHTLTFChannelEstimate
Channel estimation using HT-LTF

Syntax
chEst = wlanHTLTFChannelEstimate(demodSig,cfg)
chEst = wlanHTLTFChannelEstimate(demodSig,cfg,span)

Description
chEst = wlanHTLTFChannelEstimate(demodSig,cfg) returns the channel estimate
using the demodulated “HT-LTF” on page 1-1144 signal, demodSig, given the parameters
specified in configuration object cfg.

chEst = wlanHTLTFChannelEstimate(demodSig,cfg,span) returns the channel
estimate and specifies the span of a moving-average filter used to perform frequency
smoothing.

Examples

Estimate SISO Channel Using HT-LTF

Estimate and plot the channel coefficients of an HT-mixed format channel by using the
high throughput long training field.

Create an HT format configuration object. Generate the corresponding HT-LTF based on
the object.

cfg = wlanHTConfig;
txSig = wlanHTLTF(cfg);

4. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1 Functions — Alphabetical List

1-108

Multiply the transmitted HT-LTF signal by 0.2 + 0.1i and pass it through an AWGN
channel. Demodulate the received signal.

rxSig = awgn(txSig*(0.2+0.1i),30);
demodSig = wlanHTLTFDemodulate(rxSig,cfg);

Estimate the channel response using the demodulated HT-LTF.

est = wlanHTLTFChannelEstimate(demodSig,cfg);

Plot the channel estimate.

scatterplot(est)
grid

 wlanHTLTFChannelEstimate

1-109

The channel estimate matches the complex channel multiplier.

Estimate MIMO Channel Using HT-LTF

Estimate the channel coefficients of a 2x2 MIMO channel by using the high throughput
long training field. Recover the HT-data field and determine the number of bit errors.

Create an HT-mixed format configuration object for a channel having two spatial streams
and four transmit antennas. Transmit a complete HT waveform.

cfg = wlanHTConfig('NumTransmitAntennas',2, ...
 'NumSpaceTimeStreams',2,'MCS',11);
txPSDU = randi([0 1],8*cfg.PSDULength,1);
txWaveform = wlanWaveformGenerator(txPSDU,cfg);

Pass the transmitted waveform through a 2x2 TGn channel.

tgnChan = wlanTGnChannel('SampleRate',20e6, ...
 'NumTransmitAntennas',2, ...
 'NumReceiveAntennas',2, ...
 'LargeScaleFadingEffect','Pathloss and shadowing');
rxWaveformNoNoise = tgnChan(txWaveform);

Create an AWGN channel with noise power, nVar, corresponding to a receiver having a 9
dB noise figure. The noise power is equal to kTBF, where k is Boltzmann's constant, T is
the ambient noise temperature (290K), B is the bandwidth (20 MHz), and F is the noise
figure (9 dB).

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(20e6) + 9)/10);
awgnChan = comm.AWGNChannel('NoiseMethod','Variance', ...
 'Variance',nVar);

Pass the signal through the AWGN channel.

rxWaveform = awgnChan(rxWaveformNoNoise);

Determine the indices for the HT-LTF. Extract the HT-LTF from the received waveform.
Demodulate the HT-LTF.

indLTF = wlanFieldIndices(cfg,'HT-LTF');
rxLTF = rxWaveform(indLTF(1):indLTF(2),:);
ltfDemodSig = wlanHTLTFDemodulate(rxLTF,cfg);

1 Functions — Alphabetical List

1-110

Generate the channel estimate by using the demodulated HT-LTF signal. Specify a
smoothing filter span of three subcarriers.

chEst = wlanHTLTFChannelEstimate(ltfDemodSig,cfg,3);

Extract the HT-data field from the received waveform.

indData = wlanFieldIndices(cfg,'HT-Data');
rxDataField = rxWaveform(indData(1):indData(2),:);

Recover the data and verify that there no bit errors occurred.

rxPSDU = wlanHTDataRecover(rxDataField,chEst,nVar,cfg);

numErrs = biterr(txPSDU,rxPSDU)

numErrs = 0

Input Arguments
demodSig — Demodulated HT-LTF signal
3-D array

Demodulated HT-LTF signal, specified as an NST-by-NSYM-by-NR array. NST is the number of
occupied subcarriers, NSYM is the number of HT-LTF OFDM symbols, and NR is the
number of receive antennas.
Data Types: double

cfg — Configuration information
wlanHTConfig

Configuration information, specified as a wlanHTConfig object. The function uses the
following wlanHTConfig object properties:

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.
Data Types: char | string

 wlanHTLTFChannelEstimate

1-111

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2 | 3 | 4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

NumExtensionStreams — Number of extension spatial streams
0 (default) | 1 | 2 | 3

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.
Data Types: double

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 31

Modulation and coding scheme to use for transmitting the current packet, specified as an
integer from 0 to 31. The MCS setting identifies which modulation and coding rate
combination is used, and the number of spatial streams (NSS).

MCS(Note 1) NSS(Note 1) Modulation Coding Rate
0, 8, 16, or 24 1, 2, 3, or 4 BPSK 1/2
1, 9, 17, or 25 1, 2, 3, or 4 QPSK 1/2
2, 10, 18, or 26 1, 2, 3, or 4 QPSK 3/4
3, 11, 19, or 27 1, 2, 3, or 4 16QAM 1/2
4, 12, 20, or 28 1, 2, 3, or 4 16QAM 3/4
5, 13, 21, or 29 1, 2, 3, or 4 64QAM 2/3
6, 14, 22, or 30 1, 2, 3, or 4 64QAM 3/4
7, 15, 23, or 31 1, 2, 3, or 4 64QAM 5/6
Note-1 MCS from 0 to 7 have one spatial stream. MCS from 8 to 15 have two spatial
streams. MCS from 16 to 23 have three spatial streams. MCS from 24 to 31 have four
spatial streams.

See IEEE 802.11-2012, Section 20.6 for further description of MCS dependent
parameters.

1 Functions — Alphabetical List

1-112

When working with the HT-Data field, if the number of space-time streams is equal to the
number of spatial streams, no space-time block coding (STBC) is used. See IEEE
802.11-2012, Section 20.3.11.9.2 for further description of STBC mapping.
Example: 22 indicates an MCS with three spatial streams, 64-QAM modulation, and a 3/4
coding rate.
Data Types: double

span — Filter span
positive odd integer

Filter span of the frequency smoothing filter, specified as an odd integer. The span is
expressed as a number of subcarriers.

Note If adjacent subcarriers are highly correlated, frequency smoothing will result in
significant noise reduction. However, in a highly frequency selective channel, smoothing
may degrade the quality of the channel estimate.

Data Types: double

Output Arguments
chEst — Channel estimate
3-D array

Channel estimate between all combinations of space-time streams and receive antennas,
returned as an NST-by-(NSTS+NESS)-by-NR array. NST is the number of occupied
subcarriers, NSTS is the number of space-time streams. NESS is the number of extension
spatial streams. NR is the number of receive antennas. Data and pilot subcarriers are
included in the channel estimate.
Data Types: double

 wlanHTLTFChannelEstimate

1-113

Definitions

HT-LTF
The high throughput long training field (HT-LTF) is located between the HT-STF and data
field of an HT-mixed packet.

As described in IEEE Std 802.11-2012, Section 20.3.9.4.6, the receiver can use the HT-
LTF to estimate the MIMO channel between the set of QAM mapper outputs (or, if STBC
is applied, the STBC encoder outputs) and the receive chains. The HT-LTF portion has one
or two parts. The first part consists of one, two, or four HT-LTFs that are necessary for
demodulation of the HT-Data portion of the PPDU. These HT-LTFs are referred to as HT-
DLTFs. The optional second part consists of zero, one, two, or four HT-LTFs that can be
used to sound extra spatial dimensions of the MIMO channel not utilized by the HT-Data
portion of the PPDU. These HT-LTFs are referred to as HT-ELTFs. Each HT long training
symbol is 4 μs. The number of space-time streams and the number of extension streams
determines the number of HT-LTF symbols transmitted.

Tables 20-12, 20-13 and 20-14 from IEEE Std 802.11-2012 are reproduced here.

NSTS Determination NHTDLTF Determination NHTELTF Determination
Table 20-12 defines the
number of space-time
streams (NSTS) based on the
number of spatial streams
(NSS) from the MCS and the
STBC field.

Table 20-13 defines the
number of HT-DLTFs
required for the NSTS.

Table 20-14 defines the
number of HT-ELTFs
required for the number of
extension spatial streams
(NESS). NESS is defined in HT-
SIG2.

1 Functions — Alphabetical List

1-114

NSTS Determination NHTDLTF Determination NHTELTF Determination
NSS
from
MCS

STBC
field

NSTS

1 0 1
1 1 2
2 0 2
2 1 3
2 2 4
3 0 3
3 1 4
4 0 4

NSTS NHTDLTF
1 1
2 2
3 4
4 4

NESS NHTELTF
0 0
1 1
2 2
3 4

Additional constraints include:

• NHTLTF = NHTDLTF + NHTELTF ≤ 5.
• NSTS + NESS ≤ 4.

• When NSTS = 3, NESS cannot exceed one.
• If NESS = 1 when NSTS = 3 then NHTLTF = 5.

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems, Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[2] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac .
2nd Edition, United Kingdom: Cambridge University Press, 2013.

 wlanHTLTFChannelEstimate

1-115

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanHTLTF | wlanHTLTFDemodulate

Introduced in R2015b

1 Functions — Alphabetical List

1-116

wlanVHTLTFChannelEstimate
Channel estimation using VHT-LTF

Syntax
chEst = wlanVHTLTFChannelEstimate(demodSig,cfg)
chEst = wlanVHTLTFChannelEstimate(demodSig,cbw,numSTS)
chEst = wlanVHTLTFChannelEstimate(___ ,span)

Description
chEst = wlanVHTLTFChannelEstimate(demodSig,cfg) returns the channel
estimate, using the demodulated “VHT-LTF” on page 1-1255 signal, demodSig, given the
parameters specified in wlanVHTConfig object cfg.

chEst = wlanVHTLTFChannelEstimate(demodSig,cbw,numSTS) returns the
channel estimate for the specified channel bandwidth, cbw, and the number of space-time
streams, numSTS.

chEst = wlanVHTLTFChannelEstimate(___ ,span) specifies the span of a moving-
average filter used to perform frequency smoothing.

Examples

Estimate SISO Channel Using VHT-LTF

Display the channel estimate of the data and pilot subcarriers for a VHT format channel
using its long training field.

Create a VHT format configuration object. Generate a VHT-LTF based on cfg.

5. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

 wlanVHTLTFChannelEstimate

1-117

cfg = wlanVHTConfig;
txSig = wlanVHTLTF(cfg);

Multiply the transmitted VHT-LTF signal by 0.3 - 0.15i and pass it through an AWGN
channel having a 30 dB signal-to-noise ratio. Demodulate the received signal.

rxSig = awgn(txSig*(0.3-0.15i),30);
demodSig = wlanVHTLTFDemodulate(rxSig,cfg);

Estimate the channel response using the demodulated VHT-LTF signal.

est = wlanVHTLTFChannelEstimate(demodSig,cfg);

Plot the channel estimate.

scatterplot(est)
grid

1 Functions — Alphabetical List

1-118

The channel estimate matches the complex channel multiplier.

Estimate MIMO Channel Using VHT-LTF

Estimate and display the channel coefficients of a 4x2 MIMO channel using the VHT-LTF.

Create a VHT format configuration object for a channel having four spatial streams and
four transmit antennas. Transmit a complete VHT waveform.

cfg = wlanVHTConfig('NumTransmitAntennas',4, ...
 'NumSpaceTimeStreams',4,'MCS',5);
txWaveform = wlanWaveformGenerator([1;0;0;1;1;0],cfg);

 wlanVHTLTFChannelEstimate

1-119

Set the sampling rate, and then pass the transmitted waveform through a 4x2 TGac
channel.

fs = 80e6;
tgacChan = wlanTGacChannel('SampleRate',fs, ...
 'NumTransmitAntennas',4,'NumReceiveAntennas',2);
rxWaveform = tgacChan(txWaveform);

Determine the VHT-LTF field indices and demodulate the VHT-LTF from the received
waveform.

indVHTLTF = wlanFieldIndices(cfg,'VHT-LTF');
ltfDemodSig = wlanVHTLTFDemodulate(rxWaveform(indVHTLTF(1):indVHTLTF(2),:), cfg);

Generate the channel estimate by using the demodulated VHT-LTF signal. Specify a
smoothing filter span of five subcarriers.

est = wlanVHTLTFChannelEstimate(ltfDemodSig,cfg,5);

Plot the magnitude response of the first space-time stream for both receive antennas. Due
to the random nature of the fading channel, your results may vary.

plot(abs(est(:,1,1)))
hold on
plot(abs(est(:,1,2)))
xlabel('Subcarrier')
ylabel('Magnitude')
legend('Rx Antenna 1','Rx Antenna 2')

1 Functions — Alphabetical List

1-120

Recover VHT-Data Field in MU-MIMO Channel

Recover VHT-Data field bits for a multiuser transmission using channel estimation on a
VHT-LTF field over a quasi-static fading channel.

Create a VHT configuration object having a 160 MHz channel bandwidth, two users, and
four transmit antennas. Assign one space-time stream to the first user and three space-
time streams to the second user.

cbw = 'CBW160';
numSTS = [1 3];

 wlanVHTLTFChannelEstimate

1-121

vht = wlanVHTConfig('ChannelBandwidth',cbw,'NumUsers',2, ...
 'NumTransmitAntennas',4,'NumSpaceTimeStreams',numSTS);

Because there are two users, the PSDU length is a 1-by-2 row vector.

psduLen = vht.PSDULength

psduLen = 1×2

 1050 3156

Generate multiuser input data. This data must be in the form of a 1-by- N cell array,
where N is the number of users.

txDataBits{1} = randi([0 1],8*vht.PSDULength(1),1);
txDataBits{2} = randi([0 1],8*vht.PSDULength(2),1);

Generate VHT-LTF and VHT-Data field signals.

txVHTLTF = wlanVHTLTF(vht);
txVHTData = wlanVHTData(txDataBits,vht);

Pass the data field for the first user through a 4x1 channel because it consists of a single
space-time stream. Pass the second user's data through a 4x3 channel because it consists
of three space-time streams. Apply white Gaussian noise to each user signal.

snr = 15;
H1 = 1/sqrt(2)*complex(randn(4,1),randn(4,1));
H2 = 1/sqrt(2)*complex(randn(4,3),randn(4,3));

rxVHTData1 = awgn(txVHTData*H1,snr,'measured');
rxVHTData2 = awgn(txVHTData*H2,snr,'measured');

Repeat the process for the VHT-LTF fields.

rxVHTLTF1 = awgn(txVHTLTF*H1,snr,'measured');
rxVHTLTF2 = awgn(txVHTLTF*H2,snr,'measured');

Calculate the received signal power for both users and use it to estimate the noise
variance.

powerDB1 = 10*log10(var(rxVHTData1));
noiseVarEst1 = mean(10.^(0.1*(powerDB1-snr)));

1 Functions — Alphabetical List

1-122

powerDB2 = 10*log10(var(rxVHTData2));
noiseVarEst2 = mean(10.^(0.1*(powerDB2-snr)));

Estimate the channel characteristics using the VHT-LTF fields.

demodVHTLTF1 = wlanVHTLTFDemodulate(rxVHTLTF1,cbw,numSTS);
chanEst1 = wlanVHTLTFChannelEstimate(demodVHTLTF1,cbw,numSTS);

demodVHTLTF2 = wlanVHTLTFDemodulate(rxVHTLTF2,cbw,numSTS);
chanEst2 = wlanVHTLTFChannelEstimate(demodVHTLTF2,cbw,numSTS);

Recover VHT-Data field bits for the first user and compare against the original payload
bits.

rxDataBits1 = wlanVHTDataRecover(rxVHTData1,chanEst1,noiseVarEst1,vht,1);
[~,ber1] = biterr(txDataBits{1},rxDataBits1)

ber1 = 0.4983

Determine the number of bit errors for the second user.

rxDataBits2 = wlanVHTDataRecover(rxVHTData2,chanEst2,noiseVarEst2,vht,2);
[~,ber2] = biterr(txDataBits{2},rxDataBits2)

ber2 = 0.0972

The bit error rates are quite high because there is no precoding to mitigate the
interference between streams. This is especially evident for the user 1 receiver because it
receives energy from the three streams intended for user 2. The example is intended to
show the workflow and proper syntaxes for the LTF demodulate, channel estimation, and
data recovery functions.

Input Arguments
demodSig — Demodulated VHT-LTF signal
3-D array

Demodulated VHT-LTF signal, specified as an NST-by-NSYM-by-NR array. NST is the number
of occupied subcarriers, NSYM is the number of VHT-LTF OFDM symbols, and NR is the
number of receive antennas.
Data Types: double

 wlanVHTLTFChannelEstimate

1-123

cfg — Format configuration
wlanVHTConfig

Format configuration, specified as a wlanVHTConfig object.

cbw — Channel bandwidth
'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users.
Data Types: char | string

numSTS — Number of space-time streams
1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of integers

from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] indicates that one space-time stream is assigned to user 1, three
space-time streams are assigned to user 2, and two space-time streams are assigned to
user 3.

Note The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

span — Filter span
positive odd integer

Filter span of the frequency smoothing filter, specified as an odd integer. The span is
expressed as a number of subcarriers.

Note If adjacent subcarriers are highly correlated, frequency smoothing results in
significant noise reduction. However, in a highly frequency-selective channel, smoothing
can degrade the quality of the channel estimate.

1 Functions — Alphabetical List

1-124

Data Types: double

Output Arguments
chEst — Channel estimate
3-D array

Channel estimate between all combinations of space-time streams and receive antennas,
returned as an NST-by-NSTS,total-by-NR array. NST is the number of occupied subcarriers.
NSTS,total is the total number of space-time streams for all users. For the single-user case,
NSTS,total = NSTS. NR is the number of receive antennas. The channel estimate includes
coefficients for both the data and pilot subcarriers.
Data Types: double

Definitions

VHT-LTF
The very high throughput long training field (VHT-LTF) is located between the VHT-STF
and VHT-SIG-B portion of the VHT packet.

It is used for MIMO channel estimation and pilot subcarrier tracking. The VHT-LTF
includes one VHT long training symbol for each spatial stream indicated by the selected
MCS. Each symbol is 4 μs long. A maximum of eight symbols are permitted in the VHT-
LTF.

The VHT-LTF is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.5.

 wlanVHTLTFChannelEstimate

1-125

References
[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[3] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac.
2nd Edition, United Kingdom: Cambridge University Press, 2013.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanVHTConfig | wlanVHTDataRecover | wlanVHTLTFDemodulate

Introduced in R2015b

1 Functions — Alphabetical List

1-126

wlanFieldIndices
Generate PPDU field indices

Syntax
ind = wlanFieldIndices(cfg)
ind = wlanFieldIndices(cfg,field)

Description
ind = wlanFieldIndices(cfg) returns a structure, ind, containing the start and
stop indices of the individual component fields that comprise the baseband PPDU
waveform, given a format configuration object.

Note For non-HT format, this function only supports generation of field indices for OFDM
modulation.

ind = wlanFieldIndices(cfg,field) returns the start and stop indices for the
specified field type in the rows of an N-by-2 matrix.

Examples

Extract PPDU Fields From VHT Waveform

Extract the VHT-STF from a VHT waveform.

Create VHT configuration object for a MIMO transmission using a 160 MHz channel
bandwidth. Generate the corresponding VHT waveform.

cfg = wlanVHTConfig('MCS',8,'ChannelBandwidth','CBW160','NumTransmitAntennas',2,'NumSpaceTimeStreams',2);
txSig = wlanWaveformGenerator([1;0;0;1],cfg);

Determine the component PPDU field indices for the VHT format.

 wlanFieldIndices

1-127

ind = wlanFieldIndices(cfg)

ind = struct with fields:
 LSTF: [1 1280]
 LLTF: [1281 2560]
 LSIG: [2561 3200]
 VHTSIGA: [3201 4480]
 VHTSTF: [4481 5120]
 VHTLTF: [5121 6400]
 VHTSIGB: [6401 7040]
 VHTData: [7041 8320]

The VHT PPDU waveform is comprised of eight fields, including seven preamble fields
and one data field.

Extract the VHT-STF from the transmitted waveform.

stf = txSig(ind.VHTSTF(1):ind.VHTSTF(2),:);

Verify that the VHT-STF has dimensions of 640-by-2 corresponding to the number of
samples (80 for each 20 MHz bandwidth segment) and the number of transmit antennas.

size(stf)

ans = 1×2

 640 2

Extract VHT-LTF and Recover VHT Data

Generate a VHT waveform. Extract and demodulate the VHT-LTF to estimate the channel
coefficients. Recover the data field using the channel estimate and use this to determine
the number of bit errors.

Configure a VHT format object with two paths.

vht = wlanVHTConfig('NumTransmitAntennas',2,'NumSpaceTimeStreams',2);

Generate a random PSDU and create the corresponding VHT waveform.

1 Functions — Alphabetical List

1-128

txPSDU = randi([0 1],8*vht.PSDULength,1);
txSig = wlanWaveformGenerator(txPSDU,vht);

Pass the signal through a TGac 2x2 MIMO channel.

tgacChan = wlanTGacChannel('NumTransmitAntennas',2,'NumReceiveAntennas',2, ...
 'LargeScaleFadingEffect','Pathloss and shadowing');
rxSigNoNoise = tgacChan(txSig);

Add AWGN to the received signal. Set the noise variance for the case in which the
receiver has a 9 dB noise figure.

nVar = 10^((-228.6+10*log10(290)+10*log10(80e6)+9)/10);
awgnChan = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);
rxSig = awgnChan(rxSigNoNoise);

Determine the indices for the VHT-LTF and extract the field from the received signal.

indVHT = wlanFieldIndices(vht,'VHT-LTF');
rxLTF = rxSig(indVHT(1):indVHT(2),:);

Demodulate the VHT-LTF and estimate the channel coefficients.

dLTF = wlanVHTLTFDemodulate(rxLTF,vht);
chEst = wlanVHTLTFChannelEstimate(dLTF,vht);

Extract the data field and recover the information bits.

indData = wlanFieldIndices(vht,'VHT-Data');
rxData = rxSig(indData(1):indData(2),:);
rxPSDU = wlanVHTDataRecover(rxData,chEst,nVar,vht);

Determine the number of bit errors.

numErrs = biterr(txPSDU,rxPSDU)

numErrs = 0

Input Arguments
cfg — Transmission format
wlanDMGConfig | wlanS1GConfig | wlanVHTConfig | wlanHTConfig |
wlanNonHTConfig

 wlanFieldIndices

1-129

Transmission format, specified as a wlanDMGConfig, wlanS1GConfig, wlanVHTConfig,
wlanHTConfig, or wlanNonHTConfig configuration object.
Example: txformat = wlanVHTConfig

field — PPDU fieldname
character vector

PPDU fieldname, specified as a character vector. The valid set of field values depends
on the transmission format specified in cfg.

Transmission Format (cfg) Valid Fieldname Values (field)
wlanDMGConfig 'DMG-STF', 'DMG-CE', 'DMG-Header',

and 'DMG-Data' are common for all DMG
PHY configurations.
When the wlanDMGConfig property
'TrainingLength' > 0, additional valid
fields include: 'DMG-AGC', 'DMG-
AGCSubfields', 'DMG-TRN', 'DMG-
TRNCE', and 'DMG-TRNSubfields'.

• 'DMG-AGCSubfields' is returned in a
matrix with TrainingLength rows

• 'DMG-TRNCE' is returned in a matrix
with TrainingLength/4 rows

• 'DMG-TRNSubfields' is returned in a
matrix with TrainingLength rows

wlanS1GConfig 'S1G-STF', 'S1G-LTF1', and 'S1G-
Data' are common for all S1G
configurations.
For a 1MHz, or ≥ 2MHz short preamble
configuration, additional valid fields include
'S1G-SIG', or 'S1G-LTF2N'.
For ≥ 2MHz long preamble configuration,
additional valid fields include 'S1G-SIG-
A', 'S1G-DSTF', 'S1G-DLTF', or 'S1G-
SIG-B'.

1 Functions — Alphabetical List

1-130

Transmission Format (cfg) Valid Fieldname Values (field)
wlanVHTConfig 'L-STF', 'L-LTF', 'L-SIG', 'VHT-SIG-

A', 'VHT-STF', 'VHT-LTF', 'VHT-SIG-
B', or 'VHT-Data'

wlanHTConfig 'L-STF', 'L-LTF', 'L-SIG', 'HT-SIG',
'HT-STF', 'HT-LTF', or 'HT-Data'

wlanNonHTConfig 'L-STF', 'L-LTF', 'L-SIG', or 'NonHT-
Data'

Data Types: char | string

Output Arguments
ind — Start and stop indices
structure | matrix

Start and stop indices, returned as a structure or a matrix. The indices correspond to the
start and stop indices of fields included in the baseband waveform defined by the
specified WLAN format configuration object.

If you specify an input field, the function returns ind as an N-by-2 matrix of uint32
values, consisting of the start and stop indices of the PPDU field, where N is the number
of rows.

This table outlines the N dimension of the N-by-2 matrix that is returned based on the
specific format and configuration.

Format Configuration ind or Specific Field
Dimension

non-HT — 1-by-2
HT — 1-by-2

When null data packet
(NDP) mode, if PSDULength
= 0

empty matrix

VHT — 1-by-2

 wlanFieldIndices

1-131

Format Configuration ind or Specific Field
Dimension

When null data packet
(NDP) mode, if APEPLength
= 0

empty matrix

S1G — 1-by-2
When null data packet
(NDP) mode, if APEPLength
= 0

empty matrix

DMG — 1-by-2
When the wlanDMGConfig
object property
'TrainingLength' > 0

'DMG-AGC' is a 1-by-2
matrix
'DMG-TRN' is a 1-by-2
matrix
'DMG-AGCSubfields' is a
TrainingLength-by-2
matrix
'DMG-TRNSubfields' is a
TrainingLength-by-2
matrix
'DMG-TRNCE' is a
(TrainingLength/4)-by-2
matrix

When the wlanDMGConfig
property
'TrainingLength' = 0

'DMG-AGC' is a 0-by-2
matrix
'DMG-TRN' is a 0-by-2
matrix
'DMG-AGCSubfields' is a
0-by-2 matrix
'DMG-TRNSubfields' is a
0-by-2 matrix
'DMG-TRNCE' is a 0-by-2
matrix

1 Functions — Alphabetical List

1-132

The 'DMG-AGC' field contains NTrainingLength subfields, where NTrainingLength is 0 to 64
subfields. The 'DMG-TRN' field contains NTrainingLength + (NTrainingLength/4) subfields. As
shown here, the indices for 'DMG-AGC' and 'DMG-TRN' overlap with those of their
respective subfields, 'DMG-AGCSubfields' and 'DMG-TRNSubfields'.

 wlanFieldIndices

1-133

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[2] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[3] IEEE Std 802.11ad™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanDMGConfig | wlanHTConfig | wlanNonHTConfig | wlanS1GConfig |
wlanVHTConfig

Introduced in R2015b

1 Functions — Alphabetical List

1-134

wlanFormatDetect
Packet format detection

Syntax
format = wlanFormatDetect(rxSig,chEst,noiseVarEst,cbw)
format = wlanFormatDetect(rxSig,chEst,noiseVarEst,cbw,cfgRec)

Description
format = wlanFormatDetect(rxSig,chEst,noiseVarEst,cbw) detects and
returns the packet format for the specified received signal. Inputs include the received
signal, the channel estimate, the noise variance estimate, and the channel bandwidth. For
more information, see “Format Detection Processing” on page 1-141.

format = wlanFormatDetect(rxSig,chEst,noiseVarEst,cbw,cfgRec) uses
cfgRec to specify algorithm options for information bit recovery.

Examples

Detect HT-MF Format Waveform

Perform format detection on a WLAN high throughput mixed format (HT-MF) waveform.

Generate an HT-MF waveform and add noise to the transmitted waveform.

cbw = 'CBW20';
cfgTx = wlanHTConfig('ChannelBandwidth',cbw);
tx = wlanWaveformGenerator([1;0;0;1],cfgTx);
snr = 10;
rxSig = awgn(tx,snr);

 wlanFormatDetect

1-135

Demodulate Received Signal and Perform Channel Estimation

• Determine indices for the L-LTF for the 20 MHz bandwidth waveform. For this
calculation, define local variables for the sample rate and duration of the L-STF and L-
LTF fields in seconds.

• Demodulate the L-LTF.
• Perform channel estimation using the L-LTF.
• Estimate the noise variance.

sr = 20e6;
Tlstf = 8e-6;
Tlltf = 8e-6;

idxlltf = Tlstf*sr+(1:Tlltf*sr);

lltfDemod = wlanLLTFDemodulate(rxSig(idxlltf,:),cbw);
chEst = wlanLLTFChannelEstimate(lltfDemod,cbw);
noiseVarEst = 10^(-snr/20);

Detect Signal Format

• Determine indices for the three symbols following the L-LTF. For a 20 MHz bandwidth
waveform, the duration for three symbols is 12 .

• Perform format detection.

idxDetectionSymbols = (Tlstf+Tlltf)*sr+(1:12e-6*sr);

in = rxSig(idxDetectionSymbols,:);
format = wlanFormatDetect(in,chEst,noiseVarEst,cbw)

format =
'HT-MF'

Detect VHT Format Waveform After Adjusting Recovery Algorithm

Perform format detection on a WLAN very high throughput (VHT) waveform. Use the
recovery configuration object to adjust the default recovery algorithm settings.

Generate an VHT waveform and add noise to the transmitted waveform.

1 Functions — Alphabetical List

1-136

cbw = 'CBW80';
cfgTx = wlanVHTConfig('ChannelBandwidth',cbw);
tx = wlanWaveformGenerator([1;0;0;1],cfgTx);
snr = 10;
rxSig = awgn(tx,snr);

Received signal demodulation and channel estimation

• Determine indices for the L-LTF for the 80 MHz bandwidth waveform. For this
calculation, define local variables for the sample rate and duration of the L-STF and L-
LTF fields in seconds.

• Demodulate the L-LTF.
• Perform channel estimation using the L-LTF.
• Estimate the noise variance.

sr = 80e6;
Tlstf = 8e-6;
Tlltf = 8e-6;

idxlltf = Tlstf*sr+(1:Tlltf*sr);

lltfDemod = wlanLLTFDemodulate(rxSig(idxlltf,:),cbw);
chEst = wlanLLTFChannelEstimate(lltfDemod,cbw);
noiseVarEst = 10^(-snr/20);

Format detection

• Determine indices for the three symbols following the L-LTF. For an 80 MHz
bandwidth waveform, the duration for three symbols is 12 .

• Adjust the default recovery settings.
• Perform format detection using modified recovery settings.

TdetectionSymbols = 12e-6;
idxDetectionSymbols = (Tlstf+Tlltf)*sr+(1:TdetectionSymbols*sr);
in = rxSig(idxDetectionSymbols,:);
cfgRec = wlanRecoveryConfig('OFDMSymbolOffset',0.5,...
 'PilotPhaseTracking','None')

cfgRec =
 wlanRecoveryConfig with properties:

 OFDMSymbolOffset: 0.5000

 wlanFormatDetect

1-137

 EqualizationMethod: 'MMSE'
 PilotPhaseTracking: 'None'
 MaximumLDPCIterationCount: 12
 EarlyTermination: 0

format = wlanFormatDetect(in,chEst,noiseVarEst,cbw,cfgRec)

format =
'VHT'

Input Arguments
rxSig — Received time-domain signal
matrix

Received time-domain signal containing the three OFDM symbols immediately following
the L-LTF, specified as an NS-by-NR matrix. NS represents the number of time-domain
samples in three OFDM symbols. NR is the number of receive antennas.

Note If NS is greater than three OFDM symbols, additional samples after the first three
symbols are not used.

Data Types: double
Complex Number Support: Yes

chEst — Channel estimation
matrix | 3-D array

Channel estimation for data and pilot subcarriers based on the L-LTF, specified as a
matrix or array of size NST-by-1-by-NR. NST is the number of occupied subcarriers. The
second dimension corresponds to the single transmitted stream in the L-LTF. If multiple
transmit antennas are used, the single transmitted stream includes the combined cyclic
shifts. NR is the number of receive antennas.
Data Types: double
Complex Number Support: Yes

noiseVarEst — Noise variance estimate
nonnegative scalar

1 Functions — Alphabetical List

1-138

Noise variance estimate, specified as a nonnegative scalar.
Data Types: double

cbw — Channel bandwidth
'CBW5' | 'CBW10' | 'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth in MHz, specified as 'CBW5', 'CBW10', 'CBW20', 'CBW40',
'CBW80', or 'CBW160'.
Data Types: char

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters containing properties used during data recovery, specified as a
wlanRecoveryConfig object. The configurable properties include the OFDM symbol
sampling offset, the equalization method, and the type of pilot phase tracking. If you do
not specify a cfgRec object, the default object property values described in
wlanRecoveryConfig are used in the data recovery.

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

 wlanFormatDetect

1-139

Data Types: double

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

Equalization method, specified as 'MMSE' or 'ZF'.

• 'MMSE' indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF' indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'
Data Types: char | string

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char | string

1 Functions — Alphabetical List

1-140

Output Arguments
format — Packet format
'Non-HT' | 'HT-MF' | 'HT-GF' | 'VHT'

Packet format, returned as 'Non-HT', 'HT-MF', 'HT-GF', or 'VHT'.

Algorithms

Format Detection Processing
The format detection processing algorithm determines the packet format by detecting the
modulation scheme of three symbols. Specifically, the input waveform, rxSig, should
include three symbols, beginning with the first sample of the fifth symbol and ending with
the last sample of the seventh symbol. Additional samples after the last sample of symbol
seven are not used.

• If the packet is non-HT, HT-MF, or VHT format, these are the three symbols following
the L-LTF symbol.

• If the packet is HT-GF format, these are the three symbols following the HT-LTF1
symbol.

 wlanFormatDetect

1-141

Prior to demodulating any packet symbols, the wlanFormatDetect function checks the
channel bandwidth input. If the channel bandwidth is 5 MHz or 10 MHz, the algorithm
processing concludes and the function returns non-HT as the detected packet format.
The channel estimate, noise variance estimate, and channel bandwidth are used in the
recovery of L-SIG field bits from the fifth symbol, and in the demodulation and
equalization of the sixth and seventh symbols.

The logic associated with format detection confirms the modulation scheme by using
three consecutive symbols, beginning with the first signaling symbol (L-SIG or HT-SIG1)
in sequence. As shown, the packet format prediction is made based on which symbols are
BPSK or QBPSK modulated. This logic flow chart identifies the fifth, sixth, and seventh
symbols of the packet as sym0, sym1, and sym2, respectively.

1 Functions — Alphabetical List

1-142

 wlanFormatDetect

1-143

• If sym0 is QBPSK, the packet format is HT-GF.
• If sym0 is BPSK and the L-SIG parity check fails, a warning is issued. The format

detection processing continues because the L-SIG parity check does not conclusively
indicate an error in the MCS determination.

• If the MCS is not zero, the packet format is non-HT.
• If the MCS is zero, the modulation scheme of sym1 is detected.

• If sym1 is QBPSK, the packet format is HT-MF.
• If sym1 is BPSK, sym2 is detected.

• If sym2 is QBPSK, the packet format is VHT.
• If sym2 is BPSK, the packet format is non-HT.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanLLTFChannelEstimate | wlanLSIGRecover | wlanRecoveryConfig

Introduced in R2016b

1 Functions — Alphabetical List

1-144

wlanGolaySequence
Generate Golay sequence

Syntax
[Ga,Gb] = wlanGolaySequence(len)

Description
[Ga,Gb] = wlanGolaySequence(len) returns the Golay sequences Ga and Gb for a
specified sequence length. The sequences are defined in IEEE 802.11ad-2012, Section
21.11.

Examples

Generate Golay Sequences

Generate complementary 32-length Golay sequences.

[Ga,Gb] = wlanGolaySequence(32);

The sum of the autocorrelations is a dirac delta function.

figure
stem(xcorr(Ga)+xcorr(Gb))

 wlanGolaySequence

1-145

Input Arguments
len — Sequence length
32 | 64 | 128

Sequence length, specified as 32, 64, or 128.
Data Types: double

1 Functions — Alphabetical List

1-146

Output Arguments
Ga — Golay sequence
column vector of integers

Golay sequence, returned as a column vector of integers of length len.

Gb — Complementary Golay sequence
column vector of integers

Complementary Golay sequence, returned as a column vector of integers of length len.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanDMGConfig | wlanDMGDataBitRecover

Introduced in R2017b

 wlanGolaySequence

1-147

wlanHTConfig
Create HT format configuration object

Syntax
cfgHT = wlanHTConfig
cfgHT = wlanHTConfig(Name,Value)

Description
cfgHT = wlanHTConfig creates a configuration object that initializes parameters for an
IEEE 802.11 high throughput mixed (HT-mixed) format “PPDU” on page 1-154.

cfgHT = wlanHTConfig(Name,Value) creates an HT format configuration object that
overrides the default settings using one or more Name,Value pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create HT Configuration Object with Default Settings

Create an HT configuration object. After creating the object update the number of
transmit antennas and space-time streams.

cfgHT = wlanHTConfig

cfgHT =
 wlanHTConfig with properties:

 ChannelBandwidth: 'CBW20'
 NumTransmitAntennas: 1
 NumSpaceTimeStreams: 1

1 Functions — Alphabetical List

1-148

 SpatialMapping: 'Direct'
 MCS: 0
 GuardInterval: 'Long'
 ChannelCoding: 'BCC'
 PSDULength: 1024
 AggregatedMPDU: 0
 RecommendSmoothing: 1

Update the number of antennas to two, and number of space-time streams to four.

cfgHT.NumTransmitAntennas = 2;
cfgHT.NumSpaceTimeStreams = 4

cfgHT =
 wlanHTConfig with properties:

 ChannelBandwidth: 'CBW20'
 NumTransmitAntennas: 2
 NumSpaceTimeStreams: 4
 SpatialMapping: 'Direct'
 MCS: 0
 GuardInterval: 'Long'
 ChannelCoding: 'BCC'
 PSDULength: 1024
 AggregatedMPDU: 0
 RecommendSmoothing: 1

Create wlanHTConfig Object

Create a wlanHTConfig object with a PSDU length of 2048 bytes, and using BCC
forward error correction.

cfgHT = wlanHTConfig('PSDULength',2048);
cfgHT.ChannelBandwidth = 'CBW20'

cfgHT =
 wlanHTConfig with properties:

 ChannelBandwidth: 'CBW20'
 NumTransmitAntennas: 1

 wlanHTConfig

1-149

 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 MCS: 0
 GuardInterval: 'Long'
 ChannelCoding: 'BCC'
 PSDULength: 2048
 AggregatedMPDU: 0
 RecommendSmoothing: 1

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ChannelBandwidth','CBW40','NumTransmitAntennas',2

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.
Data Types: char | string

NumTransmitAntennas — Number of transmit antennas
1 (default) | 2 | 3 | 4

Number of transmit antennas, specified as 1, 2, 3, or 4.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2 | 3 | 4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

1 Functions — Alphabetical List

1-150

NumExtensionStreams — Number of extension spatial streams
0 (default) | 1 | 2 | 3

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.
Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value 'Direct', applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.
Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
rotate and scale the constellation mapper output vector. This property applies when the
SpatialMapping property is set to 'Custom'. The spatial mapping matrix is used for
beamforming and mixing space-time streams over the transmit antennas.

• When specified as a scalar, NumTransmitAntennas = NumSpaceTimeStreams = 1
and a constant value applies to all the subcarriers.

• When specified as a matrix, the size must be (NSTS + NESS)-by-NT. NSTS is the number
of space-time streams. NESS is the number of extension spatial streams. NT is the
number of transmit antennas. The spatial mapping matrix applies to all the
subcarriers. The first NSTS and last NESS rows apply to the space-time streams and
extension spatial streams respectively.

• When specified as a 3-D array, the size must be NST-by-(NSTS + NESS)-by-NT. NST is the
sum of the data and pilot subcarriers, as determined by ChannelBandwidth. NSTS is
the number of space-time streams. NESS is the number of extension spatial streams. NT
is the number of transmit antennas. In this case, each data and pilot subcarrier can
have its own spatial mapping matrix.

The table shows the ChannelBandwidth setting and the corresponding NST.

 wlanHTConfig

1-151

ChannelBandwidth NST

'CBW20' 56
'CBW40' 114

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3; 0.4 0.4; 0.5 0.8] represents a spatial mapping matrix having
three space-time streams and two transmit antennas.
Data Types: double
Complex Number Support: Yes

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 31

Modulation and coding scheme to use for transmitting the current packet, specified as an
integer from 0 to 31. The MCS setting identifies which modulation and coding rate
combination is used, and the number of spatial streams (NSS).

MCS(Note 1) NSS(Note 1) Modulation Coding Rate
0, 8, 16, or 24 1, 2, 3, or 4 BPSK 1/2
1, 9, 17, or 25 1, 2, 3, or 4 QPSK 1/2
2, 10, 18, or 26 1, 2, 3, or 4 QPSK 3/4
3, 11, 19, or 27 1, 2, 3, or 4 16QAM 1/2
4, 12, 20, or 28 1, 2, 3, or 4 16QAM 3/4
5, 13, 21, or 29 1, 2, 3, or 4 64QAM 2/3
6, 14, 22, or 30 1, 2, 3, or 4 64QAM 3/4
7, 15, 23, or 31 1, 2, 3, or 4 64QAM 5/6
Note-1 MCS from 0 to 7 have one spatial stream. MCS from 8 to 15 have two spatial
streams. MCS from 16 to 23 have three spatial streams. MCS from 24 to 31 have four
spatial streams.

See IEEE 802.11-2012, Section 20.6 for further description of MCS dependent
parameters.

When working with the HT-Data field, if the number of space-time streams is equal to the
number of spatial streams, no space-time block coding (STBC) is used. See IEEE
802.11-2012, Section 20.3.11.9.2 for further description of STBC mapping.

1 Functions — Alphabetical List

1-152

Example: 22 indicates an MCS with three spatial streams, 64-QAM modulation, and a 3/4
coding rate.
Data Types: double

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char | string

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default) or
'LDPC'. 'BCC' indicates binary convolutional coding, and 'LDPC' indicates low density
parity check coding.
Data Types: char | cell | string

PSDULength — Number of bytes carried in the user payload
1024 (default) | integer from 0 to 65,535

Number of bytes carried in the user payload, specified as an integer from 0 to 65,535. A
PSDULength of 0 implies a sounding packet for which there are no data bits to recover.
Example: 512
Data Types: double

AggregatedMPDU — MPDU aggregation indicator
false (default) | true

MPDU aggregation indicator, specified as a logical. Setting AggregatedMPDU to true
indicates that the current packet uses A-MPDU aggregation.
Data Types: logical

RecommendSmoothing — Recommend smoothing for channel estimation
true (default) | false

 wlanHTConfig

1-153

Recommend smoothing for channel estimation, specified as a logical.

• If the frequency profile is nonvarying across the channel , the receiver sets this
property to true. In this case, frequency-domain smoothing is recommended as part
of channel estimation.

• If the frequency profile varies across the channel, the receiver sets this property to
false. In this case, frequency-domain smoothing is not recommended as part of
channel estimation.

Data Types: logical

Output Arguments
cfgHT — HT PPDU configuration
wlanHTConfig object

HT “PPDU” on page 1-154 configuration, returned as a wlanHTConfig object. The
properties of cfgHT are described in wlanHTConfig.

Definitions

PPDU
The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

1 Functions — Alphabetical List

1-154

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanDMGConfig | wlanHTDataRecover | wlanNonHTConfig | wlanS1GConfig |
wlanVHTConfig | wlanWaveformGenerator

Topics
“Packet Size and Duration Dependencies”

Introduced in R2015b

 wlanHTConfig

1-155

wlanHTData
Generate HT-Data field waveform

Syntax
y = wlanHTData(psdu,cfg)
y = wlanHTData(psdu,cfg,scramInit)

Description
y = wlanHTData(psdu,cfg) generates the “HT-Data field” on page 1-1636 time-
domain waveform for the input PLCP service data unit, psdu, and specified configuration
object, cfg. See “HT-Data Field Processing” on page 1-164 for waveform generation
details.

y = wlanHTData(psdu,cfg,scramInit) uses scramInit for the scrambler
initialization state.

Examples

Generate HT-Data Waveform

Generate the waveform signal for a 40 MHz HT-mixed data field with multiple transmit
antennas. Create an HT format configuration object. Specify 40 MHz channel bandwidth,
two transmit antennas, and two space-time streams.

cfgHT = wlanHTConfig('ChannelBandwidth','CBW40','NumTransmitAntennas',2,'NumSpaceTimeStreams', 2,'MCS',12)

cfgHT =
 wlanHTConfig with properties:

6. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1 Functions — Alphabetical List

1-156

 ChannelBandwidth: 'CBW40'
 NumTransmitAntennas: 2
 NumSpaceTimeStreams: 2
 SpatialMapping: 'Direct'
 MCS: 12
 GuardInterval: 'Long'
 ChannelCoding: 'BCC'
 PSDULength: 1024
 AggregatedMPDU: 0
 RecommendSmoothing: 1

Assign PSDULength bytes of random data to a bit stream and generate the HT data
waveform.

PSDU = randi([0 1],cfgHT.PSDULength*8,1);
y = wlanHTData(PSDU,cfgHT);

Determine the size of the waveform.

size(y)

ans = 1×2

 2080 2

The function returns a complex two-column time-domain waveform. Each column contains
2080 samples, corresponding to the HT-Data field for each transmit antenna.

Input Arguments
psdu — PLCP Service Data Unit
vector

PLCP Service Data Unit (“PSDU” on page 1-164), specified as an Nb-by-1 vector. Nb is the
number of bits and equals PSDULength × 8.
Data Types: double

cfg — Format configuration
wlanHTConfig object

 wlanHTData

1-157

Format configuration, specified as a wlanHTConfig object. The wlanHTData function
uses the object properties indicated.

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.
Data Types: char | string

NumTransmitAntennas — Number of transmit antennas
1 (default) | 2 | 3 | 4

Number of transmit antennas, specified as 1, 2, 3, or 4.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2 | 3 | 4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

NumExtensionStreams — Number of extension spatial streams
0 (default) | 1 | 2 | 3

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.
Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value 'Direct', applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.
Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
rotate and scale the constellation mapper output vector. This property applies when the

1 Functions — Alphabetical List

1-158

SpatialMapping property is set to 'Custom'. The spatial mapping matrix is used for
beamforming and mixing space-time streams over the transmit antennas.

• When specified as a scalar, NumTransmitAntennas = NumSpaceTimeStreams = 1
and a constant value applies to all the subcarriers.

• When specified as a matrix, the size must be (NSTS + NESS)-by-NT. NSTS is the number
of space-time streams. NESS is the number of extension spatial streams. NT is the
number of transmit antennas. The spatial mapping matrix applies to all the
subcarriers. The first NSTS and last NESS rows apply to the space-time streams and
extension spatial streams respectively.

• When specified as a 3-D array, the size must be NST-by-(NSTS + NESS)-by-NT. NST is the
sum of the data and pilot subcarriers, as determined by ChannelBandwidth. NSTS is
the number of space-time streams. NESS is the number of extension spatial streams. NT
is the number of transmit antennas. In this case, each data and pilot subcarrier can
have its own spatial mapping matrix.

The table shows the ChannelBandwidth setting and the corresponding NST.

ChannelBandwidth NST

'CBW20' 56
'CBW40' 114

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3; 0.4 0.4; 0.5 0.8] represents a spatial mapping matrix having
three space-time streams and two transmit antennas.
Data Types: double
Complex Number Support: Yes

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 31

Modulation and coding scheme to use for transmitting the current packet, specified as an
integer from 0 to 31. The MCS setting identifies which modulation and coding rate
combination is used, and the number of spatial streams (NSS).

MCS(Note 1) NSS(Note 1) Modulation Coding Rate
0, 8, 16, or 24 1, 2, 3, or 4 BPSK 1/2

 wlanHTData

1-159

MCS(Note 1) NSS(Note 1) Modulation Coding Rate
1, 9, 17, or 25 1, 2, 3, or 4 QPSK 1/2
2, 10, 18, or 26 1, 2, 3, or 4 QPSK 3/4
3, 11, 19, or 27 1, 2, 3, or 4 16QAM 1/2
4, 12, 20, or 28 1, 2, 3, or 4 16QAM 3/4
5, 13, 21, or 29 1, 2, 3, or 4 64QAM 2/3
6, 14, 22, or 30 1, 2, 3, or 4 64QAM 3/4
7, 15, 23, or 31 1, 2, 3, or 4 64QAM 5/6
Note-1 MCS from 0 to 7 have one spatial stream. MCS from 8 to 15 have two spatial
streams. MCS from 16 to 23 have three spatial streams. MCS from 24 to 31 have four
spatial streams.

See IEEE 802.11-2012, Section 20.6 for further description of MCS dependent
parameters.

When working with the HT-Data field, if the number of space-time streams is equal to the
number of spatial streams, no space-time block coding (STBC) is used. See IEEE
802.11-2012, Section 20.3.11.9.2 for further description of STBC mapping.
Example: 22 indicates an MCS with three spatial streams, 64-QAM modulation, and a 3/4
coding rate.
Data Types: double

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char | string

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default) or
'LDPC'. 'BCC' indicates binary convolutional coding and 'LDPC' indicates low density

1 Functions — Alphabetical List

1-160

parity check coding. Providing a character vector or a single cell character vector defines
the channel coding type for a single user or all users in a multiuser transmission. By
providing a cell array different channel coding types can be specified per user for a
multiuser transmission.
Data Types: char | cell | string

PSDULength — Number of bytes carried in the user payload
1024 (default) | integer from 0 to 65,535

Number of bytes carried in the user payload, specified as an integer from 0 to 65,535. A
PSDULength of 0 implies a sounding packet for which there are no data bits to recover.
Example: 512
Data Types: double

scramInit — Scrambler initialization state
93 (default) | integer from 1 to 127 | binary vector

Scrambler initialization state for each packet generated, specified as an integer from 1 to
127 or as the corresponding binary vector of length seven. The default value of 93 is the
example state given in IEEE Std 802.11-2012, Section L.1.5.2.

The scrambler initialization used on the transmission data follows the process described
in IEEE Std 802.11-2012, Section 18.3.5.5 and IEEE Std 802.11ad-2012, Section 21.3.9.
The header and data fields that follow the scrambler initialization field (including data
padding bits) are scrambled by XORing each bit with a length-127 periodic sequence
generated by the polynomial S(x) = x7+x4+1. The octets of the PSDU (Physical Layer
Service Data Unit) are placed into a bit stream, and within each octet, bit 0 (LSB) is first
and bit 7 (MSB) is last. The generation of the sequence and the XOR operation are shown
in this figure:

 wlanHTData

1-161

Conversion from integer to bits uses left-MSB orientation. For the initialization of the
scrambler with decimal 1, the bits are mapped to the elements shown.

Element X7 X6 X5 X4 X3 X2 X1

Bit Value 0 0 0 0 0 0 1

To generate the bit stream equivalent to a decimal, use de2bi. For example, for decimal
1:

de2bi(1,7,'left-msb')
ans =

 0 0 0 0 0 0 1

Example: [1; 0; 1; 1; 1; 0; 1] conveys the scrambler initialization state of 93 as a
binary vector.
Data Types: double | int8

1 Functions — Alphabetical List

1-162

Output Arguments
y — HT-Data field time-domain waveform
matrix

“HT-Data field” on page 1-163 time-domain waveform for HT-mixed format, returned as an
NS-by-NT matrix. NS is the number of time domain samples, and NT is the number of
transmit antennas.

Definitions

HT-Data field
The high throughput data field (HT-Data) follows the last HT-LTF of an HT-mixed packet.

The high throughput data field is used to transmit one or more frames from the MAC
layer and consists of four subfields.

• Service field — Contains 16 zeros to initialize the data scrambler.
• PSDU — Variable-length field containing the PLCP service data unit (PSDU). In

802.11, the PSDU can consist of an aggregate of several MAC service data units.

 wlanHTData

1-163

• Tail — Tail bits required to terminate a convolutional code. The field uses six zeros for
each encoding stream.

• Pad Bits — Variable-length field required to ensure that the HT-Data field consists of
an integer number of symbols.

PSDU
Physical layer convergence procedure (PLCP) service data unit (PSDU). This field is
composed of a variable number of octets. The minimum is 0 (zero) and the maximum is
2500. For more information, see IEEE Std 802.11™-2012, Section 15.3.5.7.

Algorithms

HT-Data Field Processing
The “HT-Data field” on page 1-163 follows the last HT-LTF in the packet structure.

The “HT-Data field” on page 1-163 includes the user payload in the PSDU, plus 16 service
bits, 6 × NES tail bits, and additional padding bits as required to fill out the last OFDM
symbol.

For algorithm details, refer to IEEE Std 802.11™-2012 [1], Section 20.3.11. The
wlanHTData function performs transmitter processing on the “HT-Data field” on page 1-
163 and outputs the time-domain waveform for NT transmit antennas.

1 Functions — Alphabetical List

1-164

NES is the number of BCC encoders.
NSS is the number of spatial streams.
NSTS is the number of space-time streams.
NT is the number of transmit antennas.

 wlanHTData

1-165

BCC channel coding is shown. STBC and spatial mapping are optional modes for HT
format.

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanHTDataRecover | wlanHTLTF | wlanWaveformGenerator

Introduced in R2015b

1 Functions — Alphabetical List

1-166

wlanHTDataRecover
Recover HT data

Syntax
recData = wlanHTDataRecover(rxSig,chEst,noiseVarEst,cfg)
recData = wlanHTDataRecover(rxSig,chEst,noiseVarEst,cfg,cfgRec)
[recData,eqSym] = wlanHTDataRecover(___)
[recData,eqSym,cpe] = wlanHTDataRecover(___)

Description
recData = wlanHTDataRecover(rxSig,chEst,noiseVarEst,cfg) returns the
recovered “HT-Data field” on page 1-1747, recData, for input signal rxSig. Specify a
channel estimate for the occupied subcarriers, chEst, a noise variance estimate,
noiseVarEst, and an “HT-Mixed” on page 1-175 format configuration object, cfg.

recData = wlanHTDataRecover(rxSig,chEst,noiseVarEst,cfg,cfgRec)
specifies algorithm information using wlanRecoveryConfig object cfgRec.

[recData,eqSym] = wlanHTDataRecover(___) also returns the equalized symbols,
eqSym, using the arguments from the previous syntaxes.

[recData,eqSym,cpe] = wlanHTDataRecover(___) also returns the common
phase error, cpe.

Examples

7. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

 wlanHTDataRecover

1-167

Recover HT-Data Bits

Create an HT configuration object having a PSDU length of 1024 bytes. Generate an
HTData sequence from a binary sequence whose length is eight times the length of the
PSDU.

cfgHT = wlanHTConfig('PSDULength',1024);
txBits = randi([0 1],8*cfgHT.PSDULength,1);
txHTSig = wlanHTData(txBits,cfgHT);

Pass the signal through an AWGN channel with a signal-to-noise ratio of 10 dB.

rxHTSig = awgn(txHTSig,10);

Specify a channel estimate. Because fading was not introduced, a vector of ones is a
perfect estimate. For a 20 MHz bandwidth, there are 52 data subcarriers and 4 pilot
subcarriers in the HT-SIG field.

chEst = ones(56,1);

Recover the data bits and determine the number of bit errors. Display the number of bit
errors and the associated bit error rate.

rxBits = wlanHTDataRecover(rxHTSig,chEst,0.1,cfgHT);
[numerr,ber] = biterr(rxBits,txBits)

numerr = 0

ber = 0

Recover HT-Data Field Signal Using Zero-Forcing Algorithm

Create an HT configuration object having a 40 MHz channel bandwidth and a 1024-byte
PSDU length. Generate the corresponding HT-Data sequence.

cfgHT = wlanHTConfig('ChannelBandwidth','CBW40','PSDULength',1024);
txBits = randi([0 1],8*cfgHT.PSDULength,1);
txHTSig = wlanHTData(txBits, cfgHT);

Pass the signal through an AWGN channel with a signal-to-noise ratio of 7 dB.

rxHTSig = awgn(txHTSig,7);

1 Functions — Alphabetical List

1-168

Create a data recovery object that specifies the use of the zero-forcing algorithm.

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF');

Recover the data and determine the number of bit errors. Because fading was not
introduced, the channel estimate is set to a vector of ones whose length is equal to the
number of occupied subcarriers.

rxBits = wlanHTDataRecover(rxHTSig,ones(114,1),0.2,cfgHT,cfgRec);
[numerr,ber] = biterr(rxBits,txBits)

numerr = 0

ber = 0

Input Arguments
rxSig — Received HT-Data signal
vector | matrix

Received HT-Data signal, specified as an NS-by-NR vector or matrix. NS is the number of
samples, and NR is the number of receive antennas.
Data Types: double

chEst — Channel estimate
vector | matrix | 3-D array

Channel estimate, specified as an NST-by-NSTS-by-NR array. NST is the number of occupied
subcarriers, NSTS is the number of space-time streams, and NR is the number of receive
antennas.
Data Types: double

noiseVarEst — Noise variance estimate
scalar

Noise variance estimate, specified as a nonnegative scalar.
Example: 0.7071
Data Types: double

 wlanHTDataRecover

1-169

cfg — Format configuration
wlanHTConfig object

Format configuration, specified as a wlanHTConfig object. The wlanHTDataRecover
function uses the following wlanHTConfig object properties:

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.
Data Types: char | string

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2 | 3 | 4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 31

Modulation and coding scheme to use for transmitting the current packet, specified as an
integer from 0 to 31. The MCS setting identifies which modulation and coding rate
combination is used, and the number of spatial streams (NSS).

MCS(Note 1) NSS(Note 1) Modulation Coding Rate
0, 8, 16, or 24 1, 2, 3, or 4 BPSK 1/2
1, 9, 17, or 25 1, 2, 3, or 4 QPSK 1/2
2, 10, 18, or 26 1, 2, 3, or 4 QPSK 3/4
3, 11, 19, or 27 1, 2, 3, or 4 16QAM 1/2
4, 12, 20, or 28 1, 2, 3, or 4 16QAM 3/4
5, 13, 21, or 29 1, 2, 3, or 4 64QAM 2/3
6, 14, 22, or 30 1, 2, 3, or 4 64QAM 3/4
7, 15, 23, or 31 1, 2, 3, or 4 64QAM 5/6

1 Functions — Alphabetical List

1-170

MCS(Note 1) NSS(Note 1) Modulation Coding Rate
Note-1 MCS from 0 to 7 have one spatial stream. MCS from 8 to 15 have two spatial
streams. MCS from 16 to 23 have three spatial streams. MCS from 24 to 31 have four
spatial streams.

See IEEE 802.11-2012, Section 20.6 for further description of MCS dependent
parameters.

When working with the HT-Data field, if the number of space-time streams is equal to the
number of spatial streams, no space-time block coding (STBC) is used. See IEEE
802.11-2012, Section 20.3.11.9.2 for further description of STBC mapping.
Example: 22 indicates an MCS with three spatial streams, 64-QAM modulation, and a 3/4
coding rate.
Data Types: double

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char | string

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default) or
'LDPC'. 'BCC' indicates binary convolutional coding and 'LDPC' indicates low density
parity check coding. Providing a character vector or a single cell character vector defines
the channel coding type for a single user or all users in a multiuser transmission. By
providing a cell array different channel coding types can be specified per user for a
multiuser transmission.
Data Types: char | cell | string

PSDULength — Number of bytes carried in the user payload
1024 (default) | integer from 0 to 65,535

 wlanHTDataRecover

1-171

Number of bytes carried in the user payload, specified as an integer from 0 to 65,535. A
PSDULength of 0 implies a sounding packet for which there are no data bits to recover.
Example: 512
Data Types: double

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters, specified as a wlanRecoveryConfig object. The object
properties include:

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

Data Types: double

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

Equalization method, specified as 'MMSE' or 'ZF'.

1 Functions — Alphabetical List

1-172

• 'MMSE' indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF' indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'
Data Types: char | string

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char | string

MaximumLDPCIterationCount — Maximum number of decoding iterations in
LDPC
12 (default) | positive scalar integer

Maximum number of decoding iterations in LDPC, specified as a positive scalar integer.
This parameter is applicable when channel coding is set to LDPC. For information on
channel coding options, see wlanVHTConfig or wlanHTConfig for 802.11 format of
interest.
Data Types: double

EarlyTermination — Enable early termination of LDPC decoding
false (default) | true

Enable early termination of LDPC decoding, specified as a logical. This parameter is
applicable when channel coding is set to LDPC.

• When set to false, LDPC decoding completes the number of iterations specified by
MaximumLDPCIterationCount, regardless of parity check status.

• When set to true, LDPC decoding terminates when all parity-checks are satisfied.

For information on channel coding options, see wlanVHTConfig or wlanHTConfig for
802.11 format of interest.

 wlanHTDataRecover

1-173

Output Arguments
recData — Recovered binary output data
binary column vector

Recovered binary output data, returned as a column vector of length 8×NPSDU, where
NPSDU is the length of the PSDU in bytes. See wlanHTConfig for PSDULength details.
Data Types: int8

eqSym — Equalized symbols
column vector | matrix | 3-D array

Equalized symbols, returned as an NSD-by-NSYM-by-NSS array. NSD is the number of data
subcarriers, NSYM is the number of OFDM symbols in the HT-Data field, and NSS is the
number of spatial streams.
Data Types: double

cpe — Common phase error
column vector

Common phase error in radians, returned as a column vector having length NSYM. NSYM is
the number of OFDM symbols in the HT-Data field.

Definitions

HT-Data field
The high throughput data field (HT-Data) follows the last HT-LTF of an HT-mixed packet.

1 Functions — Alphabetical List

1-174

The high throughput data field is used to transmit one or more frames from the MAC
layer and consists of four subfields.

• Service field — Contains 16 zeros to initialize the data scrambler.
• PSDU — Variable-length field containing the PLCP service data unit (PSDU). In

802.11, the PSDU can consist of an aggregate of several MAC service data units.
• Tail — Tail bits required to terminate a convolutional code. The field uses six zeros for

each encoding stream.
• Pad Bits — Variable-length field required to ensure that the HT-Data field consists of

an integer number of symbols.

HT-Mixed
High throughput mixed (HT-mixed) format devices support a mixed mode in which the
PLCP header is compatible with HT and Non-HT modes.

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 wlanHTDataRecover

1-175

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanRecoveryConfig

Introduced in R2015b

1 Functions — Alphabetical List

1-176

wlanHTLTF
Generate HT-LTF waveform

Syntax
y = wlanHTLTF(cfg)

Description
y = wlanHTLTF(cfg) generates an “HT-LTF” on page 1-1818 time-domain waveform for
“HT-mixed” on page 1-183 format transmissions given the parameters specified in cfg.

Examples

Generate Single-Stream HT-LTF Waveform

Create a wlanHTConfig object having a channel bandwidth of 40 MHz.

cfg = wlanHTConfig('ChannelBandwidth','CBW40');

Generate the corresponding HT-LTF.

hltfOut = wlanHTLTF(cfg);
size(hltfOut)

ans = 1×2

 160 1

The cfg parameters result in a 160-sample waveform having only one column
corresponding to a single stream transmission.

8. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

 wlanHTLTF

1-177

Generate HT-LTF with Four Space-Time Streams

Generate an HT-LTF having four transmit antennas and four space-time streams.

Create a wlanHTConfig object having an MCS of 31, four transmit antennas, and four
space-time streams.

cfg = wlanHTConfig('MCS',31,'NumTransmitAntennas',4,'NumSpaceTimeStreams',4)

cfg =
 wlanHTConfig with properties:

 ChannelBandwidth: 'CBW20'
 NumTransmitAntennas: 4
 NumSpaceTimeStreams: 4
 SpatialMapping: 'Direct'
 MCS: 31
 GuardInterval: 'Long'
 ChannelCoding: 'BCC'
 PSDULength: 1024
 AggregatedMPDU: 0
 RecommendSmoothing: 1

Generate the corresponding HT-LTF.

hltfOut = wlanHTLTF(cfg);

Verify that the HT-LTF output consists of four streams (one for each antenna).

size(hltfOut)

ans = 1×2

 320 4

Because the channel bandwidth is 20 MHz and has four space-time streams, the output
waveform has four HT-LTF and 320 time-domain samples.

1 Functions — Alphabetical List

1-178

Input Arguments
cfg — Format configuration
wlanHTConfig object

Format configuration, specified as a wlanHTConfig object. The wlanHTLTF function uses
these properties:

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.
Data Types: char | string

NumTransmitAntennas — Number of transmit antennas
1 (default) | 2 | 3 | 4

Number of transmit antennas, specified as 1, 2, 3, or 4.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2 | 3 | 4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

NumExtensionStreams — Number of extension spatial streams
0 (default) | 1 | 2 | 3

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.
Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value 'Direct', applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.

 wlanHTLTF

1-179

Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
rotate and scale the constellation mapper output vector. This property applies when the
SpatialMapping property is set to 'Custom'. The spatial mapping matrix is used for
beamforming and mixing space-time streams over the transmit antennas.

• When specified as a scalar, NumTransmitAntennas = NumSpaceTimeStreams = 1
and a constant value applies to all the subcarriers.

• When specified as a matrix, the size must be (NSTS + NESS)-by-NT. NSTS is the number
of space-time streams. NESS is the number of extension spatial streams. NT is the
number of transmit antennas. The spatial mapping matrix applies to all the
subcarriers. The first NSTS and last NESS rows apply to the space-time streams and
extension spatial streams respectively.

• When specified as a 3-D array, the size must be NST-by-(NSTS + NESS)-by-NT. NST is the
sum of the data and pilot subcarriers, as determined by ChannelBandwidth. NSTS is
the number of space-time streams. NESS is the number of extension spatial streams. NT
is the number of transmit antennas. In this case, each data and pilot subcarrier can
have its own spatial mapping matrix.

The table shows the ChannelBandwidth setting and the corresponding NST.

ChannelBandwidth NST

'CBW20' 56
'CBW40' 114

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3; 0.4 0.4; 0.5 0.8] represents a spatial mapping matrix having
three space-time streams and two transmit antennas.
Data Types: double
Complex Number Support: Yes

1 Functions — Alphabetical List

1-180

Output Arguments
y — HT-LTF waveform
matrix

HT-LTF waveform, returned as an (NS × NHTLTF)-by-NT matrix. NS is the number of time
domain samples per NHTLTF, where NHTLTF is the number of OFDM symbols in the “HT-LTF”
on page 1-181. NT is the number of transmit antennas.

NS is proportional to the channel bandwidth. Each symbol contains 80 time samples per
20 MHz channel.

ChannelBandwidth NS
'CBW20' 80
'CBW40' 160

Determination of the number of NHTLTF is described in “HT-LTF” on page 1-181.
Data Types: double

Definitions

HT-LTF
The high throughput long training field (HT-LTF) is located between the HT-STF and data
field of an HT-mixed packet.

As described in IEEE Std 802.11-2012, Section 20.3.9.4.6, the receiver can use the HT-
LTF to estimate the MIMO channel between the set of QAM mapper outputs (or, if STBC

 wlanHTLTF

1-181

is applied, the STBC encoder outputs) and the receive chains. The HT-LTF portion has one
or two parts. The first part consists of one, two, or four HT-LTFs that are necessary for
demodulation of the HT-Data portion of the PPDU. These HT-LTFs are referred to as HT-
DLTFs. The optional second part consists of zero, one, two, or four HT-LTFs that can be
used to sound extra spatial dimensions of the MIMO channel not utilized by the HT-Data
portion of the PPDU. These HT-LTFs are referred to as HT-ELTFs. Each HT long training
symbol is 4 μs. The number of space-time streams and the number of extension streams
determines the number of HT-LTF symbols transmitted.

Tables 20-12, 20-13 and 20-14 from IEEE Std 802.11-2012 are reproduced here.

NSTS Determination NHTDLTF Determination NHTELTF Determination
Table 20-12 defines the
number of space-time
streams (NSTS) based on the
number of spatial streams
(NSS) from the MCS and the
STBC field.

Table 20-13 defines the
number of HT-DLTFs
required for the NSTS.

Table 20-14 defines the
number of HT-ELTFs
required for the number of
extension spatial streams
(NESS). NESS is defined in HT-
SIG2.

NSS
from
MCS

STBC
field

NSTS

1 0 1
1 1 2
2 0 2
2 1 3
2 2 4
3 0 3
3 1 4
4 0 4

NSTS NHTDLTF
1 1
2 2
3 4
4 4

NESS NHTELTF
0 0
1 1
2 2
3 4

Additional constraints include:

• NHTLTF = NHTDLTF + NHTELTF ≤ 5.
• NSTS + NESS ≤ 4.

• When NSTS = 3, NESS cannot exceed one.

1 Functions — Alphabetical List

1-182

• If NESS = 1 when NSTS = 3 then NHTLTF = 5.

HT-mixed
As described in IEEE Std 802.11-2012, Section 20.1.4, high throughput mixed (HT-mixed)
format packets contain a preamble compatible with IEEE Std 802.11-2012, Section 18
and Section 19 receivers. Non-HT (Section 18 and Section19) STAs can decode the non-
HT fields (L-STF, L-LTF, and L-SIG). The remaining preamble fields (HT-SIG, HT-STF, and
HT-LTF) are for HT transmission, so the Section 18 and Section 19 STAs cannot decode
them. The HT portion of the packet is described in IEEE Std 802.11-2012, Section
20.3.9.4. Support for the HT-mixed format is mandatory.

PPDU
The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

 wlanHTLTF

1-183

See Also
wlanHTConfig | wlanHTData | wlanHTLTFChannelEstimate |
wlanHTLTFDemodulate | wlanLLTF

Introduced in R2015b

1 Functions — Alphabetical List

1-184

wlanHTLTFDemodulate
Demodulate HT-LTF waveform

Syntax
y = wlanHTLTFDemodulate(x,cfg)
y = wlanHTLTFDemodulate(x,cfg,OFDMSymbolOffset)

Description
y = wlanHTLTFDemodulate(x,cfg) returns the demodulated “HT-LTF” on page 1-
1899, y, given received HT-LTF x. The input signal is a component of the “HT-mixed” on
page 1-190 format “PPDU” on page 1-191. The function demodulates the signal using the
information in the wlanHTConfig object, cfg.

y = wlanHTLTFDemodulate(x,cfg,OFDMSymbolOffset) specifies the OFDM symbol
sampling offset.

Examples

Demodulate HT-LTF in AWGN

Create an HT configuration object.

cfg = wlanHTConfig;

Generate an HT-LTF signal based on the object.

x = wlanHTLTF(cfg);

Pass the HT-LTF signal through an AWGN channel.

9. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

 wlanHTLTFDemodulate

1-185

y = awgn(x,20);

Demodulate the received signal.

z = wlanHTLTFDemodulate(y,cfg);

Display the scatter plot of the demodulated signal.

scatterplot(z)

1 Functions — Alphabetical List

1-186

Demodulate 2x2 HT-LTF with OFDM Symbol Offset

Create an HT configuration object having two transmit antennas and two space-time
streams.

cfg = wlanHTConfig('NumTransmitAntennas',2,'NumSpaceTimeStreams',2, ...
 'MCS',8);

Generate the HT-LTF based on the configuration object.

x = wlanHTLTF(cfg);

Pass the HT-LTF signal through an AWGN channel.

y = awgn(x,10);

Demodulate the received signal. Set the OFDM symbol offset to 0.5, which corresponds
to 1/2 of the cyclic prefix length.

z = wlanHTLTFDemodulate(y,cfg,0.5);

Input Arguments
x — Input signal
matrix

Input signal comprising an “HT-LTF” on page 1-189, specified as an NS-by-NR matrix. NS is
the number of samples and NR is the number of receive antennas. You can generate the
signal by using the wlanHTLTF function.
Data Types: double

cfg — HT format configuration
wlanHTConfig object

HT format configuration, specified as a wlanHTConfig object. The function uses the
following wlanHTConfig object properties:

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.

 wlanHTLTFDemodulate

1-187

Data Types: char | string

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2 | 3 | 4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

NumExtensionStreams — Number of extension spatial streams
0 (default) | 1 | 2 | 3

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.
Data Types: double

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

Data Types: double

1 Functions — Alphabetical List

1-188

Output Arguments
y — Demodulated HT-LTF signal
matrix | 3-D array

Demodulated HT-LTF signal for an HT-Mixed PPDU, returned as an NST-by-NSYM-by-NR
matrix or array. NST is the number of data and pilot subcarriers. NSYM is the number of
OFDM symbols in the HT-LTF. NR is the number of receive antennas.
Data Types: double

Definitions

HT-LTF
The high throughput long training field (HT-LTF) is located between the HT-STF and data
field of an HT-mixed packet.

As described in IEEE Std 802.11-2012, Section 20.3.9.4.6, the receiver can use the HT-
LTF to estimate the MIMO channel between the set of QAM mapper outputs (or, if STBC
is applied, the STBC encoder outputs) and the receive chains. The HT-LTF portion has one
or two parts. The first part consists of one, two, or four HT-LTFs that are necessary for
demodulation of the HT-Data portion of the PPDU. These HT-LTFs are referred to as HT-
DLTFs. The optional second part consists of zero, one, two, or four HT-LTFs that can be
used to sound extra spatial dimensions of the MIMO channel not utilized by the HT-Data
portion of the PPDU. These HT-LTFs are referred to as HT-ELTFs. Each HT long training
symbol is 4 μs. The number of space-time streams and the number of extension streams
determines the number of HT-LTF symbols transmitted.

Tables 20-12, 20-13 and 20-14 from IEEE Std 802.11-2012 are reproduced here.

 wlanHTLTFDemodulate

1-189

NSTS Determination NHTDLTF Determination NHTELTF Determination
Table 20-12 defines the
number of space-time
streams (NSTS) based on the
number of spatial streams
(NSS) from the MCS and the
STBC field.

Table 20-13 defines the
number of HT-DLTFs
required for the NSTS.

Table 20-14 defines the
number of HT-ELTFs
required for the number of
extension spatial streams
(NESS). NESS is defined in HT-
SIG2.

NSS
from
MCS

STBC
field

NSTS

1 0 1
1 1 2
2 0 2
2 1 3
2 2 4
3 0 3
3 1 4
4 0 4

NSTS NHTDLTF
1 1
2 2
3 4
4 4

NESS NHTELTF
0 0
1 1
2 2
3 4

Additional constraints include:

• NHTLTF = NHTDLTF + NHTELTF ≤ 5.
• NSTS + NESS ≤ 4.

• When NSTS = 3, NESS cannot exceed one.
• If NESS = 1 when NSTS = 3 then NHTLTF = 5.

HT-mixed
High throughput mixed (HT-mixed) format devices support a mixed mode in which the
PLCP header is compatible with HT and non-HT modes.

1 Functions — Alphabetical List

1-190

PPDU
The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanHTLTF | wlanHTLTFChannelEstimate

Introduced in R2015b

 wlanHTLTFDemodulate

1-191

wlanHTSIG
Generate HT-SIG waveform

Syntax
y = wlanHTSIG(cfg)
[y,bits] = wlanHTSIG(cfg)

Description
y = wlanHTSIG(cfg) generates an “HT-SIG” on page 1-19710 time-domain waveform
for “HT-mixed” on page 1-198 format transmissions given the parameters specified in
cfg.

[y,bits] = wlanHTSIG(cfg) returns the information bits, bits, that comprise the
HT-SIG field.

Examples

Generate HT-SIG Waveform

Generate an HT-SIG waveform for a single transmit antenna.

Create an HT configuration object. Specify a 40 MHz channel bandwidth.

cfg = wlanHTConfig;
cfg.ChannelBandwidth = 'CBW40'

cfg =
 wlanHTConfig with properties:

 ChannelBandwidth: 'CBW40'

10. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1 Functions — Alphabetical List

1-192

 NumTransmitAntennas: 1
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 MCS: 0
 GuardInterval: 'Long'
 ChannelCoding: 'BCC'
 PSDULength: 1024
 AggregatedMPDU: 0
 RecommendSmoothing: 1

Generate the HT-SIG waveform. Determine the size of the waveform.

y = wlanHTSIG(cfg);
size(y)

ans = 1×2

 320 1

The function returns a waveform having a complex output of 320 samples corresponding
to two 160-sample OFDM symbols.

Display MCS Information from HT-SIG

Generate an HT-SIG waveform and display the MCS information. Change the MCS and
display the updated information.

Create a wlanHTConfig object having two spatial streams and two transmit antennas.
Specify an MCS value of 8, corresponding to BPSK modulation and a coding rate of 1/2.

cfg = wlanHTConfig('NumSpaceTimeStreams',2,'NumTransmitAntennas',2,'MCS',8);

Generate the information bits from the HT-SIG waveform.

[~,sigBits] = wlanHTSIG(cfg);

Extract the MCS field from sigBits and convert it to its decimal equivalent. The MCS
information is contained in bits 1-7.

 mcsBits = sigBits(1:7);
 bi2de(mcsBits')

 wlanHTSIG

1-193

ans = int8
 8

The MCS matches the specified value.

Change the MCS to 13, which corresponds to 64-QAM modulation with a 2/3 coding rate.
Generate the HT-SIG waveform.

cfg.MCS = 13;
[~,sigBits] = wlanHTSIG(cfg);

Verify that the MCS bits are the binary equivalent of 13.

mcsBits = sigBits(1:7);
bi2de(mcsBits')

ans = int8
 13

Input Arguments
cfg — Format configuration
wlanHTConfig object

Format configuration, specified as a wlanHTConfig object. The wlanHTSIG function uses
these properties.

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 31

Modulation and coding scheme to use for transmitting the current packet, specified as an
integer from 0 to 31. The MCS setting identifies which modulation and coding rate
combination is used, and the number of spatial streams (NSS).

MCS(Note 1) NSS(Note 1) Modulation Coding Rate
0, 8, 16, or 24 1, 2, 3, or 4 BPSK 1/2
1, 9, 17, or 25 1, 2, 3, or 4 QPSK 1/2
2, 10, 18, or 26 1, 2, 3, or 4 QPSK 3/4
3, 11, 19, or 27 1, 2, 3, or 4 16QAM 1/2

1 Functions — Alphabetical List

1-194

MCS(Note 1) NSS(Note 1) Modulation Coding Rate
4, 12, 20, or 28 1, 2, 3, or 4 16QAM 3/4
5, 13, 21, or 29 1, 2, 3, or 4 64QAM 2/3
6, 14, 22, or 30 1, 2, 3, or 4 64QAM 3/4
7, 15, 23, or 31 1, 2, 3, or 4 64QAM 5/6
Note-1 MCS from 0 to 7 have one spatial stream. MCS from 8 to 15 have two spatial
streams. MCS from 16 to 23 have three spatial streams. MCS from 24 to 31 have four
spatial streams.

See IEEE 802.11-2012, Section 20.6 for further description of MCS dependent
parameters.

When working with the HT-Data field, if the number of space-time streams is equal to the
number of spatial streams, no space-time block coding (STBC) is used. See IEEE
802.11-2012, Section 20.3.11.9.2 for further description of STBC mapping.
Example: 22 indicates an MCS with three spatial streams, 64-QAM modulation, and a 3/4
coding rate.
Data Types: double

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.
Data Types: char | string

PSDULength — Number of bytes carried in the user payload
1024 (default) | integer from 0 to 65,535

Number of bytes carried in the user payload, specified as an integer from 0 to 65,535. A
PSDULength of 0 implies a sounding packet for which there are no data bits to recover.
Example: 512
Data Types: double

RecommendSmoothing — Recommend smoothing for channel estimation
true (default) | false

Recommend smoothing for channel estimation, specified as a logical.

 wlanHTSIG

1-195

• If the frequency profile is nonvarying across the channel , the receiver sets this
property to true. In this case, frequency-domain smoothing is recommended as part
of channel estimation.

• If the frequency profile varies across the channel, the receiver sets this property to
false. In this case, frequency-domain smoothing is not recommended as part of
channel estimation.

Data Types: logical

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2 | 3 | 4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default) or
'LDPC'. 'BCC' indicates binary convolutional coding and 'LDPC' indicates low density
parity check coding. Providing a character vector or a single cell character vector defines
the channel coding type for a single user or all users in a multiuser transmission. By
providing a cell array different channel coding types can be specified per user for a
multiuser transmission.
Data Types: char | cell | string

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char | string

NumExtensionStreams — Number of extension spatial streams
0 (default) | 1 | 2 | 3

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.

1 Functions — Alphabetical List

1-196

Data Types: double

Output Arguments
y — HT-SIG waveform
matrix

HT-SIG waveform, returned as an NS-by-NT matrix. NS is the number of time-domain
samples, and NT is the number of transmit antennas.
Data Types: double

bits — HT-SIG information bits
vector

HT-SIG information bits, returned as a 48-by-1 vector.
Data Types: int8

Definitions

HT-SIG
The high throughput signal (HT-SIG) field is located between the L-SIG field and HT-STF
and is part of the HT-mixed format preamble. It is composed of two symbols, HT-SIG1 and
HT-SIG2.

HT-SIG carries information used to decode the HT packet, including the MCS, packet
length, FEC coding type, guard interval, number of extension spatial streams, and

 wlanHTSIG

1-197

whether there is payload aggregation. The HT-SIG symbols are also used for auto-
detection between HT-mixed format and legacy OFDM packets.

Refer to IEEE Std 802.11-2012, Section 20.3.9.4.3 for a detailed description of the HT-SIG
field.

HT-mixed
As described in IEEE Std 802.11-2012, Section 20.1.4, high throughput mixed (HT-mixed)
format packets contain a preamble compatible with IEEE Std 802.11-2012, Section 18
and Section 19 receivers. Non-HT (Section 18 and Section19) STAs can decode the non-
HT fields (L-STF, L-LTF, and L-SIG). The remaining preamble fields (HT-SIG, HT-STF, and
HT-LTF) are for HT transmission, so the Section 18 and Section 19 STAs cannot decode
them. The HT portion of the packet is described in IEEE Std 802.11-2012, Section
20.3.9.4. Support for the HT-mixed format is mandatory.

1 Functions — Alphabetical List

1-198

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanHTSIGRecover | wlanHTSTF | wlanLSIG

Introduced in R2015b

 wlanHTSIG

1-199

wlanHTSIGRecover
Recover HT-SIG information bits

Syntax
recBits = wlanHTSIGRecover(rxSig,chEst,noiseVarEst,cbw)
recBits = wlanHTSIGRecover(rxSig,chEst,noiseVarEst,cbw,cfgRec)
[recBits,failCRC] = wlanHTSIGRecover(___)
[recBits,failCRC,eqSym] = wlanHTSIGRecover(___)
[recBits,failCRC,eqSym,cpe] = wlanHTSIGRecover(___)

Description
recBits = wlanHTSIGRecover(rxSig,chEst,noiseVarEst,cbw) returns the
recovered information bits from the “HT-SIG” on page 1-20811 field and performs a CRC
check. Inputs include the channel estimate data chEst, noise variance estimate
noiseVarEst, and channel bandwidth cbw.

recBits = wlanHTSIGRecover(rxSig,chEst,noiseVarEst,cbw,cfgRec)
specifies algorithm parameters using wlanRecoveryConfig object cfgRec.

[recBits,failCRC] = wlanHTSIGRecover(___) returns the result of the CRC
check, failCRC, using any of the arguments from the previous syntaxes.

[recBits,failCRC,eqSym] = wlanHTSIGRecover(___) returns the equalized
symbols, eqSym.

[recBits,failCRC,eqSym,cpe] = wlanHTSIGRecover(___) returns the common
phase error, cpe.

Examples

11. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1 Functions — Alphabetical List

1-200

Recover HT-SIG Information Bits in Perfect Channel

Create a wlanHTConfig object having a channel bandwidth of 40 MHz. Use the object to
create an HT-SIG field.

cfg = wlanHTConfig('ChannelBandwidth','CBW40');
[txSig,txBits] = wlanHTSIG(cfg);

Because a perfect channel is assumed, specify the channel estimate as a column vector of
ones and the noise variance estimate as zero.

chEst = ones(104,1);
noiseVarEst = 0;

Recover the HT-SIG information bits. Verify that the received information bits are
identical to the transmitted bits.

rxBits = wlanHTSIGRecover(txSig,chEst,noiseVarEst,'CBW40');
numerr = biterr(txBits,rxBits)

numerr = 0

Recover HT-SIG Using Zero-Forcing Equalizer

Create a wlanHTConfig object having a channel bandwidth of 40 MHz. Use the object to
create an HT-SIG field.

cfg = wlanHTConfig('ChannelBandwidth','CBW40');
[txSig,txBits] = wlanHTSIG(cfg);

Pass the transmitted HT-SIG through an AWGN channel.

awgnChan = comm.AWGNChannel('NoiseMethod','Variance', ...
 'Variance',0.1);

rxSig = awgnChan(txSig);

Use a zero-forcing equalizer by creating a wlanRecoveryConfig object with its
EqualizationMethod property set to 'ZF'.

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF');

Recover the HT-SIG field. Verify that the received information has no bit errors.

 wlanHTSIGRecover

1-201

rxBits = wlanHTSIGRecover(rxSig,ones(104,1),0.1,'CBW40',cfgRec);
biterr(txBits,rxBits)

ans = 0

Recover HT-SIG in 2x2 MIMO Channel

Recover HT-SIG in a 2x2 MIMO channel with AWGN. Confirm that the CRC check passes.

Configure a 2x2 MIMO TGn channel.

chanBW = 'CBW20';
cfg = wlanHTConfig(...
 'ChannelBandwidth',chanBW, ...
 'NumTransmitAntennas',2, ...
 'NumSpaceTimeStreams',2);

Generate L-LTF and HT-SIG waveforms.

txLLTF = wlanLLTF(cfg);
txHTSIG = wlanHTSIG(cfg);

Set the sample rate to correspond to the channel bandwidth. Create a TGn 2x2 MIMO
channel without large scale fading effects.

fsamp = 20e6;
tgnChan = wlanTGnChannel('SampleRate',fsamp, ...
 'LargeScaleFadingEffect','None', ...
 'NumTransmitAntennas',2, ...
 'NumReceiveAntennas',2);

Pass the L-LTF and HT-SIG waveforms through a TGn channel with white noise.

rxLLTF = awgn(tgnChan(txLLTF),20);
rxHTSIG = awgn(tgnChan(txHTSIG),20);

Demodulate the L-LTF signal. Generate a channel estimate by using the demodulated L-
LTF.

demodLLTF = wlanLLTFDemodulate(rxLLTF,chanBW,1);
chanEst = wlanLLTFChannelEstimate(demodLLTF,chanBW);

1 Functions — Alphabetical List

1-202

Recover the information bits, the CRC failure status, and the equalized symbols from the
received HT-SIG field.

[recHTSIGBits,failCRC,eqSym] = wlanHTSIGRecover(rxHTSIG, ...
 chanEst,0.01,chanBW);

Verify that HT-SIG passed a CRC check by examining the status of failCRC.

failCRC

failCRC = logical
 0

Because failCRC is 0, HT-SIG passed the CRC check.

Visualize the scatter plot of the equalized symbols, eqSym.

scatterplot(eqSym(:))

 wlanHTSIGRecover

1-203

Input Arguments
rxSig — Received HT-SIG field
matrix

Received HT-SIG field, specified as an NS-by-NR matrix. NS is the number of samples and
increases with channel bandwidth.

Channel Bandwidth NS

'CBW20' 160

1 Functions — Alphabetical List

1-204

Channel Bandwidth NS

'CBW40' 320

NR is the number of receive antennas.
Data Types: double

chEst — Channel estimate
vector | 3-D array

Channel estimate, specified as an NST-by-1-by-NR array. NST is the number of occupied
subcarriers and increases with channel bandwidth.

Channel Bandwidth NST

'CBW20' 52
'CBW40' 104

NR is the number of receive antennas.

The channel estimate is based on the “L-LTF” on page 1-209.

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.
Data Types: double

cbw — Channel bandwidth
'CBW20' | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.
Data Types: char | string

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters, specified as a wlanRecoveryConfig object. The function uses
these properties.

 wlanHTSIGRecover

1-205

Note If cfgRec is not provided, the function uses the default values of the
wlanRecoveryConfig object.

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

Data Types: double

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

Equalization method, specified as 'MMSE' or 'ZF'.

• 'MMSE' indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF' indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'
Data Types: char | string

1 Functions — Alphabetical List

1-206

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char | string

Output Arguments
recBits — Recovered HT-SIG information
vector

Recovered HT-SIG information bits, returned as a 48-element column vector. The number
of elements corresponds to the length of the HT-SIG field.

failCRC — CRC failure status
true | false

CRC failure status, returned as a logical scalar. If HT-SIG fails the CRC check, failCRC is
true.

eqSym — Equalized symbols
matrix

Equalized symbols, returned as a 48-by-2 matrix corresponding to 48 data subcarriers
and 2 OFDM symbols.

cpe — Common phase error
column vector

Common phase error in radians, returned as a 2-by-1 column vector.

 wlanHTSIGRecover

1-207

Definitions

HT-SIG
The high throughput signal (HT-SIG) field is located between the L-SIG field and HT-STF
and is part of the HT-mixed format preamble. It is composed of two symbols, HT-SIG1 and
HT-SIG2.

HT-SIG carries information used to decode the HT packet, including the MCS, packet
length, FEC coding type, guard interval, number of extension spatial streams, and
whether there is payload aggregation. The HT-SIG symbols are also used for auto-
detection between HT-mixed format and legacy OFDM packets.

1 Functions — Alphabetical List

1-208

Refer to IEEE Std 802.11-2012, Section 20.3.9.4.3 for a detailed description of the HT-SIG
field.

L-LTF
The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP legacy
preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

 wlanHTSIGRecover

1-209

Channel estimation, fine frequency offset estimation, and fine symbol timing offset
estimation rely on the L-LTF.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The CP consists of the second half of the long training symbol.

The L-LTF duration varies with channel bandwidth.

1 Functions — Alphabetical List

1-210

Channel
Bandwidth
(MHz)

Subcarrier
Frequency
Spacing, ΔF
(kHz)

Fast Fourier
Transform
(FFT) Period
(TFFT = 1 / ΔF)

Cyclic Prefix or
Training
Symbol Guard
Interval (GI2)
Duration
(TGI2 = TFFT / 2)

L-LTF Duration
(TLONG = TGI2 +
2 × TFFT)

20, 40, 80, and
160

312.5 3.2 μs 1.6 μs 8 μs

10 156.25 6.4 μs 3.2 μs 16 μs
5 78.125 12.8 μs 6.4 μs 32 μs

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanHTSIG | wlanRecoveryConfig

Introduced in R2015b

 wlanHTSIGRecover

1-211

wlanHTSTF
Generate HT-STF waveform

Syntax
y = wlanHTSTF(cfg)

Description
y = wlanHTSTF(cfg) generates an “HT-STF” on page 1-21512 time-domain waveform
for “HT-mixed” on page 1-215 format transmissions, given the parameters specified in
cfg.

Examples

Generate HT Short Training Field

Create a wlanHTConfig object with a 40 MHz bandwidth.

cfg = wlanHTConfig('ChannelBandwidth','CBW40');

Generate an HT-STF. The function returns a complex output of 160 samples.

stf = wlanHTSTF(cfg);
size(stf)

ans = 1×2

 160 1

Change the channel bandwidth to 20 MHz and create a new HT-STF.

12. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1 Functions — Alphabetical List

1-212

cfg.ChannelBandwidth = 'CBW20';
stf = wlanHTSTF(cfg);

Verify that the number of samples has been halved due to the bandwidth reduction.

size(stf)

ans = 1×2

 80 1

Input Arguments
cfg — Format configuration
wlanHTConfig object

Format configuration, specified as a wlanHTConfig object. The wlanHTSTF function uses
these properties.

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.
Data Types: char | string

NumTransmitAntennas — Number of transmit antennas
1 (default) | 2 | 3 | 4

Number of transmit antennas, specified as 1, 2, 3, or 4.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2 | 3 | 4

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

 wlanHTSTF

1-213

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value 'Direct', applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.
Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
rotate and scale the constellation mapper output vector. This property applies when the
SpatialMapping property is set to 'Custom'. The spatial mapping matrix is used for
beamforming and mixing space-time streams over the transmit antennas.

• When specified as a scalar, NumTransmitAntennas = NumSpaceTimeStreams = 1
and a constant value applies to all the subcarriers.

• When specified as a matrix, the size must be (NSTS + NESS)-by-NT. NSTS is the number
of space-time streams. NESS is the number of extension spatial streams. NT is the
number of transmit antennas. The spatial mapping matrix applies to all the
subcarriers. The first NSTS and last NESS rows apply to the space-time streams and
extension spatial streams respectively.

• When specified as a 3-D array, the size must be NST-by-(NSTS + NESS)-by-NT. NST is the
sum of the data and pilot subcarriers, as determined by ChannelBandwidth. NSTS is
the number of space-time streams. NESS is the number of extension spatial streams. NT
is the number of transmit antennas. In this case, each data and pilot subcarrier can
have its own spatial mapping matrix.

The table shows the ChannelBandwidth setting and the corresponding NST.

ChannelBandwidth NST

'CBW20' 56
'CBW40' 114

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3; 0.4 0.4; 0.5 0.8] represents a spatial mapping matrix having
three space-time streams and two transmit antennas.
Data Types: double
Complex Number Support: Yes

1 Functions — Alphabetical List

1-214

Output Arguments
y — HT-STF waveform
matrix

HT-STF waveform, returned as an NS-by-NT matrix. NS is the number of samples, and NT is
the number of transmit antennas.
Data Types: double

Definitions
HT-STF
The high throughput short training field (HT-STF) is located between the HT-SIG and HT-
LTF fields of an HT-mixed packet. The HT-STF is 4 μs in length and is used to improve
automatic gain control estimation for a MIMO system. For a 20 MHz transmission, the
frequency sequence used to construct the HT-STF is identical to that of the L-STF. For a
40 MHz transmission, the upper subcarriers of the HT-STF are constructed from a
frequency-shifted and phase-rotated version of the L-STF.

HT-mixed
As described in IEEE Std 802.11-2012, Section 20.1.4, high throughput mixed (HT-mixed)
format packets contain a preamble compatible with IEEE Std 802.11-2012, Section 18
and Section 19 receivers. Non-HT (Section 18 and Section19) STAs can decode the non-
HT fields (L-STF, L-LTF, and L-SIG). The remaining preamble fields (HT-SIG, HT-STF, and
HT-LTF) are for HT transmission, so the Section 18 and Section 19 STAs cannot decode
them. The HT portion of the packet is described in IEEE Std 802.11-2012, Section
20.3.9.4. Support for the HT-mixed format is mandatory.

 wlanHTSTF

1-215

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanHTLTF | wlanHTSIG | wlanLSTF

Introduced in R2015b

1 Functions — Alphabetical List

1-216

wlanLLTF
Generate L-LTF waveform

Syntax
y = wlanLLTF(cfg)

Description
y = wlanLLTF(cfg) generates an “L-LTF” on page 1-22013 time-domain waveform for
the specified configuration object.

Examples

Generate L-LTF Waveform

Generate the L-LTF for a 40 MHz single antenna VHT packet.

cfgVHT = wlanVHTConfig('ChannelBandwidth', 'CBW40');
y = wlanLLTF(cfgVHT);
size(y)

ans = 1×2

 320 1

plot(abs(y))
xlabel('Samples')
ylabel('Amplitude')

13. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

 wlanLLTF

1-217

The output L-LTF waveform contains 320 time-domain samples for a 40 MHz channel
bandwidth.

Input Arguments
cfg — Format configuration
wlanVHTConfig object | wlanHTConfig object | wlanNonHTConfig object

Format configuration, specified as a wlanVHTConfig, wlanHTConfig, or
wlanNonHTConfig object. For a specified format, the wlanLLTF function uses only the
object properties indicated.

1 Functions — Alphabetical List

1-218

Transmission Format Configuration Object Applicable Object
Properties

VHT wlanVHTConfig ChannelBandwidth,
NumTransmitAntennas

HT wlanHTConfig ChannelBandwidth,
NumTransmitAntennas

non-HT
See note.

wlanNonHTConfig ChannelBandwidth,
NumTransmitAntennas

Note:

1 For non-HT format, when channel bandwidth is 5 MHz or 10 MHz,
NumTransmitAntennas is not applicable because only one transmit antenna is
permitted.

Example: wlanVHTConfig

Output Arguments
y — L-LTF time-domain waveform
matrix

“L-LTF” on page 1-220 time-domain waveform, returned as an NS-by-NT matrix. NS is the
number of time-domain samples, and NT is the number of transmit antennas.

NS is proportional to the channel bandwidth. The time-domain waveform consists of two
symbols.

ChannelBandwidth NS

'CBW5', 'CBW10', 'CBW20' 160
'CBW40' 320
'CBW80' 640
'CBW160' 1280

Data Types: double
Complex Number Support: Yes

 wlanLLTF

1-219

Definitions
L-LTF
The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP legacy
preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

Channel estimation, fine frequency offset estimation, and fine symbol timing offset
estimation rely on the L-LTF.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The CP consists of the second half of the long training symbol.

The L-LTF duration varies with channel bandwidth.

1 Functions — Alphabetical List

1-220

Channel
Bandwidth
(MHz)

Subcarrier
Frequency
Spacing, ΔF
(kHz)

Fast Fourier
Transform
(FFT) Period
(TFFT = 1 / ΔF)

Cyclic Prefix or
Training
Symbol Guard
Interval (GI2)
Duration
(TGI2 = TFFT / 2)

L-LTF Duration
(TLONG = TGI2 +
2 × TFFT)

20, 40, 80, and
160

312.5 3.2 μs 1.6 μs 8 μs

10 156.25 6.4 μs 3.2 μs 16 μs
5 78.125 12.8 μs 6.4 μs 32 μs

Algorithms
The “L-LTF” on page 1-220 is two OFDM symbols long and follows the L-STF of the
preamble in the packet structure for the VHT, HT, and non-HT formats. For algorithm
details, refer to IEEE Std 802.11ac-2013 [1], Section 22.3.8.2.3 and IEEE Std
802.11-2012 [2], Section 20.3.9.3.4.

References
[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

 wlanLLTF

1-221

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanLLTFChannelEstimate | wlanLLTFDemodulate | wlanLSIG |
wlanLSTF | wlanNonHTConfig | wlanVHTConfig

Introduced in R2015b

1 Functions — Alphabetical List

1-222

wlanLLTFDemodulate
Demodulate L-LTF waveform

Syntax
y = wlanLLTFDemodulate(x,cbw)
y = wlanLLTFDemodulate(x,cfg)
y = wlanLLTFDemodulate(___ ,symOffset)

Description
y = wlanLLTFDemodulate(x,cbw) returns the demodulated “L-LTF” on page 1-22614

waveform given time-domain input signal x and channel bandwidth cbw.

y = wlanLLTFDemodulate(x,cfg) returns the demodulated L-LTF given the format
configuration object, cfg.

y = wlanLLTFDemodulate(___ ,symOffset) specifies the OFDM symbol offset,
symOffset, using any of the arguments from the previous syntaxes.

Examples

Demodulate L-LTF for Non-HT Format Transmission

Demodulate the L-LTF used in a non-HT OFDM transmission, after passing the L-LTF
through an AWGN channel.

Create a non-HT configuration object and use it to generate an L-LTF signal.

cfg = wlanNonHTConfig;
txSig = wlanLLTF(cfg);

14. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

 wlanLLTFDemodulate

1-223

Pass the L-LTF signal through an AWGN channel. Demodulate the received signal.

rxSig = awgn(txSig,15,'measured');
y = wlanLLTFDemodulate(rxSig,'CBW20');

Demodulate L-LTF for VHT Format Transmission

Demodulate the L-LTF used in a VHT transmission, after passing the L-LTF through an
AWGN channel.

Create a VHT configuration object and use it to generate an L-LTF signal.

cfg = wlanVHTConfig;
txSig = wlanLLTF(cfg);

Pass the L-LTF signal through an AWGN channel.

rxSig = awgn(txSig,5);

Demodulate the received L-LTF using the information from the wlanVHTConfig object.

y = wlanLLTFDemodulate(rxSig,cfg);

Demodulate L-LTF with OFDM Symbol Offset

Demodulate the L-LTF for the HT-mixed transmission format, given a custom OFDM
symbol offset.

Set the channel bandwidth to 40 MHz and the OFDM symbol offset to 1. That way, the
FFT takes place after the guard interval.

cbw = 'CBW40';
ofdmSymOffset = 1;

Create an HT configuration object and use it to generate an L-LTF signal.

cfg = wlanHTConfig('ChannelBandwidth',cbw);
txSig = wlanLLTF(cfg);

Pass the L-LTF signal through an AWGN channel.

1 Functions — Alphabetical List

1-224

rxSig = awgn(txSig,10);

Demodulate the received L-LTF using a custom OFDM symbol offset.

y = wlanLLTFDemodulate(rxSig,'CBW40',ofdmSymOffset);

Input Arguments
x — Time-domain input signal
vector | matrix

Time-domain input signal corresponding to the L-LTF of the “PPDU” on page 1-228,
specified as an NS-by-NR vector or matrix. NS is the number of samples and NR is the
number of receive antennas.

NS is proportional to the channel bandwidth. The time-domain waveform consists of two
symbols.

ChannelBandwidth NS

'CBW5', 'CBW10', 'CBW20' 160
'CBW40' 320
'CBW80' 640
'CBW160' 1280

Data Types: double

cbw — Channel bandwidth
'CBW5' | 'CBW10' | 'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth in MHz, specified as 'CBW5', 'CBW10', 'CBW20', 'CBW40',
'CBW80', or 'CBW160'.
Data Types: char | string

cfg — Format information
wlanNonHTConfig | wlanHTConfig | wlanVHTConfig

Format information, specified as a WLAN configuration object. To create these objects,
see wlanNonHTConfig, wlanHTConfig, or wlanVHTConfig.

 wlanLLTFDemodulate

1-225

symOffset — OFDM symbol offset
0.75 (default) | real scalar from 0 to 1

OFDM symbol offset as a fraction of the cyclic prefix length, specified as a real scalar
from 0 to 1.
Data Types: double

Output Arguments
y — Demodulated L-LTF signal
3-D OFDM symbol array

Demodulated L-LTF signal, returned as an NST-by-NSYM-by-NR array. NST is the number of
occupied subcarriers, NSYM is the number of OFDM symbols, and NR is the number of
receive antennas. For the L-LTF, NSYM is always 2.

NST varies with channel bandwidth.

ChannelBandwidth Number of Occupied Subcarriers (NST)
'CBW20', 'CBW10', 'CBW5' 52
'CBW40' 104
'CBW80' 208
'CBW160' 416

Definitions

L-LTF
The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP legacy
preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

1 Functions — Alphabetical List

1-226

Channel estimation, fine frequency offset estimation, and fine symbol timing offset
estimation rely on the L-LTF.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The CP consists of the second half of the long training symbol.

The L-LTF duration varies with channel bandwidth.

 wlanLLTFDemodulate

1-227

Channel
Bandwidth
(MHz)

Subcarrier
Frequency
Spacing, ΔF
(kHz)

Fast Fourier
Transform
(FFT) Period
(TFFT = 1 / ΔF)

Cyclic Prefix or
Training
Symbol Guard
Interval (GI2)
Duration
(TGI2 = TFFT / 2)

L-LTF Duration
(TLONG = TGI2 +
2 × TFFT)

20, 40, 80, and
160

312.5 3.2 μs 1.6 μs 8 μs

10 156.25 6.4 μs 3.2 μs 16 μs
5 78.125 12.8 μs 6.4 μs 32 μs

PPDU
The PLCP protocol data unit (PPDU) is the complete “PLCP” on page 1-228 frame,
including PLCP headers, MAC headers, the MAC data field, and the MAC and PLCP
trailers [2].

PLCP
The physical layer convergence procedure (PLCP) is the upper component of the physical
layer in 802.11 networks. Each physical layer has its own PLCP, which provides auxiliary
framing to the MAC [2].

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[2] Gast, Matthew S. 802.11n: A Survival Guide. Sebastopol, CA: O’Reilly Media Inc.,
2012, p. 120.

1 Functions — Alphabetical List

1-228

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanLLTF | wlanLLTFChannelEstimate

Introduced in R2015b

 wlanLLTFDemodulate

1-229

wlanLSIG
Generate L-SIG waveform

Syntax
[y, bits] = wlanLSIG(cfgFormat)

Description
[y, bits] = wlanLSIG(cfgFormat) generates an “L-SIG” on page 1-23415 time-
domain waveform using the specified configuration object.

Examples

Generate L-SIG Waveform for 80 MHz VHT Packet

Generate the L-SIG waveform for an 80 MHz VHT transmission format packet.

cfgVHT = wlanVHTConfig;
cfgVHT.ChannelBandwidth = 'CBW80';
lsigOut = wlanLSIG(cfgVHT);
size(lsigOut)

ans = 1×2

 320 1

The L-SIG waveform returned contains one symbol with 320 complex samples for an 80
MHz channel bandwidth.

15. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1 Functions — Alphabetical List

1-230

Extract Rate Information from L-SIG

Create a non-HT configuration object. The default MCS is 0.

cfg = wlanNonHTConfig

cfg =
 wlanNonHTConfig with properties:

 Modulation: 'OFDM'
 ChannelBandwidth: 'CBW20'
 MCS: 0
 PSDULength: 1000
 NumTransmitAntennas: 1

Generate the L-SIG waveform and information bits. Extract the rate from the returned
bits. The rate information is contained in the first four bits.

[y,bits] = wlanLSIG(cfg);
rateBits = bits(1:4)

rateBits = 4x1 int8 column vector

 1
 1
 0
 1

As defined in IEEE Std 802.11™-2012, Table 18-6, a value of [1 1 0 1] corresponds to a
rate of 6 Mbps for 20 MHz channel spacing.

Change MCS to 7 then regenerate the L-SIG waveform and information bits. Extract the
rate from the returned bits and analyze. The rate information is contained in the first four
bits.

cfg.MCS = 7

cfg =
 wlanNonHTConfig with properties:

 Modulation: 'OFDM'
 ChannelBandwidth: 'CBW20'
 MCS: 7

 wlanLSIG

1-231

 PSDULength: 1000
 NumTransmitAntennas: 1

[y,bits] = wlanLSIG(cfg);

rateBits = bits(1:4)

rateBits = 4x1 int8 column vector

 0
 0
 1
 1

As defined in IEEE Std 802.11-2012, Table 18-6, a value of [0 0 1 1] corresponds to a
rate of 54 Mbps for 20 MHz channel spacing.

Input Arguments
cfgFormat — Format configuration
wlanVHTConfig object | wlanHTConfig object | wlanNonHTConfig object

Format configuration, specified as a wlanVHTConfig, wlanHTConfig, or
wlanNonHTConfig object. For a specified format, the wlanLSIG function uses only the
object properties indicated.

Transmission Format Configuration Object Applicable Object
Properties

VHT wlanVHTConfig ChannelBandwidth,
NumUsers,
NumTransmitAntennas,
NumSpaceTimeStreams,
STBC, MCS,
ChannelCoding,
APEPLength,
GuardInterval

1 Functions — Alphabetical List

1-232

Transmission Format Configuration Object Applicable Object
Properties

HT wlanHTConfig ChannelBandwidth,
NumTransmitAntennas,
NumSpaceTimeStreams,
MCS, GuardInterval,
ChannelCoding,
PSDULength

non-HT

See note.

wlanNonHTConfig ChannelBandwidth,
Modulation, MCS,
PSDULength,
NumTransmitAntennas

Note:

1 Only OFDM modulation is supported for a wlanNonHTConfig object input.
2 For non-HT format, when channel bandwidth is 5 MHz or 10 MHz,

NumTransmitAntennas is not applicable because only one transmit antenna is
permitted.

Example: wlanVHTConfig

Output Arguments
y — L-SIG time-domain waveform
matrix

“L-SIG” on page 1-234 time-domain waveform, returned as an NS-by-NT matrix. NS is the
number of time-domain samples, and NT is the number of transmit antennas.

NS is proportional to the channel bandwidth.

ChannelBandwidth NS
'CBW5', 'CBW10', 'CBW20' 80
'CBW40' 160
'CBW80' 320
'CBW160' 640

 wlanLSIG

1-233

Data Types: double
Complex Number Support: Yes

bits — Signaling bits
column vector

Signaling bits from the legacy signal field, returned as a 24-by-1 bit column vector. See
“L-SIG” on page 1-234 for the bit field description.
Data Types: int8

Definitions

L-SIG
The legacy signal (L-SIG) field is the third field of the 802.11 OFDM PLCP legacy
preamble. It consists of 24 bits that contain rate, length, and parity information. The L-
SIG is a component of VHT, HT, and non-HT PPDUs. It is transmitted using BPSK
modulation with rate 1/2 binary convolutional coding (BCC).

The L-SIG is one OFDM symbol with a duration that varies with channel bandwidth.

1 Functions — Alphabetical List

1-234

Channel
Bandwidth
(MHz)

Subcarrier
frequency
spacing, ΔF
(kHz)

Fast Fourier
Transform
(FFT) period
(TFFT = 1 / ΔF)

Guard Interval
(GI) Duration
(TGI = TFFT / 4)

L-SIG duration
(TSIGNAL = TGI +
TFFT)

20, 40, 80, and
160

312.5 3.2 μs 0.8 μs 4 μs

10 156.25 6.4 μs 1.6 μs 8 μs
5 78.125 12.8 μs 3.2 μs 16 μs

The L-SIG contains packet information for the received configuration,

• Bits 0 through 3 specify the data rate (modulation and coding rate) for the non-HT
format.

Rate (bits
0–3)

Modulation Coding rate
(R)

Data Rate (Mb/s)
20 MHz
channel

bandwidth

10 MHz
channel

bandwidth

5 MHz
channel

bandwidth
1101 BPSK 1/2 6 3 1.5
1111 BPSK 3/4 9 4.5 2.25
0101 QPSK 1/2 12 6 3
0111 QPSK 3/4 18 9 4.5
1001 16-QAM 1/2 24 12 6
1011 16-QAM 3/4 36 18 9
0001 64-QAM 2/3 48 24 12

 wlanLSIG

1-235

Rate (bits
0–3)

Modulation Coding rate
(R)

Data Rate (Mb/s)
20 MHz
channel

bandwidth

10 MHz
channel

bandwidth

5 MHz
channel

bandwidth
0011 64-QAM 3/4 54 27 13.5

For HT and VHT formats, the L-SIG rate bits are set to '1 1 0 1'. Data rate
information for HT and VHT formats is signaled in format-specific signaling fields.

• Bit 4 is reserved for future use.
• Bits 5 through 16:

• For non-HT, specify the data length (amount of data transmitted in octets) as
described in IEEE Std 802.11-2012, Table 18-1 and Section 9.23.4.

• For HT-mixed, specify the transmission time as described in IEEE Std 802.11-2012,
Section 20.3.9.3.5 and Section 9.23.4.

• For VHT, specify the transmission time as described in IEEE Std 802.11ac-2013,
Section 22.3.8.2.4.

• Bit 17 has the even parity of bits 0 through 16.
• Bits 18 through 23 contain all zeros for the signal tail bits.

Note Signaling fields added for HT (wlanHTSIG) and VHT (wlanVHTSIGA,
wlanVHTSIGB) formats provide data rate and configuration information for those formats.

• For the HT-mixed format, IEEE Std 802.11-2012, Section 20.3.9.4.3 describes HT-SIG
bit settings.

• For the VHT format, IEEE Std 802.11ac-2013, Section 22.3.8.3.3 and Section
22.3.8.3.6 describe bit settings for VHT-SIG-A and VHT-SIG-B, respectively.

Algorithms
The “L-SIG” on page 1-234 follows the L-STF and L-LTF of the preamble in the packet
structure.

1 Functions — Alphabetical List

1-236

For “L-SIG” on page 1-234 transmission processing algorithm details, see:

• VHT format – refer to IEEE Std 802.11ac-2013 [1], Section 22.3.8.2.4
• HT format – refer to IEEE Std 802.11-2012 [2], Sections 20.3.9.3.5
• non-HT format – refer to IEEE Std 802.11-2012 [2], Sections 18.3.4

The wlanLSIG function performs transmitter processing on the “L-SIG” on page 1-234
field and outputs the time-domain waveform.

 wlanLSIG

1-237

References
[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and

1 Functions — Alphabetical List

1-238

metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanLLTF | wlanLSIGRecover | wlanNonHTConfig |
wlanVHTConfig

Introduced in R2015b

 wlanLSIG

1-239

wlanLSIGRecover
Recover L-SIG information bits

Syntax
recBits = wlanLSIGRecover(rxSig,chEst,noiseVarEst,cbw)
recBits = wlanLSIGRecover(rxSig,chEst,noiseVarEst,cbw,cfgRec)
[recBits,failCheck] = wlanLSIGRecover(___)
[recBits,failCheck,eqSym] = wlanLSIGRecover(___)
[recBits,failCheck,eqSym,cpe] = wlanLSIGRecover(___)

Description
recBits = wlanLSIGRecover(rxSig,chEst,noiseVarEst,cbw) returns the
recovered “L-SIG” on page 1-24816 information bits, recBits, given the time-domain L-
SIG waveform, rxSig. Specify the channel estimate, chEst, the noise variance estimate,
noiseVarEst, and the channel bandwidth, cbw.

recBits = wlanLSIGRecover(rxSig,chEst,noiseVarEst,cbw,cfgRec) returns
information bits and specifies algorithm information using wlanRecoveryConfig object
cfgRec.

[recBits,failCheck] = wlanLSIGRecover(___) returns the status of a validity
check, failCheck, using the arguments from previous syntaxes.

[recBits,failCheck,eqSym] = wlanLSIGRecover(___) returns the equalized
symbols, eqSym.

[recBits,failCheck,eqSym,cpe] = wlanLSIGRecover(___) returns the common
phase error, cpe.

16. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1 Functions — Alphabetical List

1-240

Examples

Recover L-SIG Information from 2x2 MIMO Channel

Recover L-SIG information transmitted in a noisy 2x2 MIMO channel, and calculate the
number of bit errors present in the received information bits.

Set the channel bandwidth and sample rate.

chanBW = 'CBW40';
fs = 40e6;

Create a VHT configuration object corresponding to a 40 MHz 2x2 MIMO channel.

vht = wlanVHTConfig(...
 'ChannelBandwidth',chanBW, ...
 'NumTransmitAntennas',2, ...
 'NumSpaceTimeStreams',2);

Generate the L-LTF and L-SIG field signals.

txLLTF = wlanLLTF(vht);
[txLSIG,txLSIGData] = wlanLSIG(vht);

Create a 2x2 TGac channel and an AWGN channel with an SNR=10 dB.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',chanBW, ...
 'NumTransmitAntennas',2,'NumReceiveAntennas',2);

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...
 'SNR',10);

Pass the signals through the noisy 2x2 multipath fading channel.

rxLLTF = chNoise(tgacChan(txLLTF));
rxLSIG = chNoise(tgacChan(txLSIG));

Add additional white noise corresponding to a receiver with a 9 dB noise figure. The noise
variance is equal to k*T*B*F, where k is Boltzmann's constant, T is the ambient
temperature, B is the channel bandwidth (sample rate), and F is the receiver noise figure.

nVar = 10^((-228.6+10*log10(290) + 10*log10(fs) + 9)/10);
rxNoise = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

 wlanLSIGRecover

1-241

rxLLTF = rxNoise(rxLLTF);
rxLSIG = rxNoise(rxLSIG);

Perform channel estimation based on the L-LTF.

demodLLTF = wlanLLTFDemodulate(rxLLTF,chanBW,1);
chanEst = wlanLLTFChannelEstimate(demodLLTF,chanBW);

Recover the L-SIG information bits.

rxLSIGData = wlanLSIGRecover(rxLSIG,chanEst,0.1,chanBW);

Verify that there are no bit errors in the recovered L-SIG data.

numErrors = biterr(txLSIGData,rxLSIGData)

numErrors = 0

Recover L-SIG with Zero Forcing Equalizer

Recover L-SIG information using the zero-forcing equalizer algorithm. Calculate the
number of bit errors in the received data.

Create an HT configuration object.

cfgHT = wlanHTConfig;

Create a recovery object with EqualizationMethod property set to zero forcing, 'ZF'.

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF');

Generate the L-SIG field and pass it through an AWGN channel.

[txLSIG,txLSIGData] = wlanLSIG(cfgHT);
rxLSIG = awgn(txLSIG,20);

Recover the L-SIG using the zero-forcing algorithm set in cfgRec. The channel estimate
is a vector of ones because fading was not introduced.

rxLSIGData = wlanLSIGRecover(rxLSIG,ones(52,1),0.01,'CBW20',cfgRec);

Verify that there are no bit errors in the recovered L-SIG data.

1 Functions — Alphabetical List

1-242

numErrors = biterr(txLSIGData,rxLSIGData)

numErrors = 0

Recover L-SIG from Phase and Frequency Offset

Recover the L-SIG from a channel that introduces a fixed phase and frequency offset.

Create a VHT configuration object corresponding to a 160 MHz SISO channel. Generate
the transmitted L-SIG field.

cfgVHT = wlanVHTConfig('ChannelBandwidth','CBW160');
txLSIG = wlanLSIG(cfgVHT);

Create a recovery configuration object and disable pilot phase tracking.

cfgRec = wlanRecoveryConfig('PilotPhaseTracking','None');

To introduce a 45 degree phase offset and a 100 Hz frequency offset, create a phase and
frequency offset System object.

pfOffset = comm.PhaseFrequencyOffset('SampleRate',160e6,'PhaseOffset',45, ...
 'FrequencyOffset',100);

Introduce phase and frequency offsets to the transmitted L-SIG. Pass the L-SIG through
an AWGN channel.

rxLSIG = awgn(pfOffset(txLSIG),20);

Recover the L-SIG information bits, the failure check status, and the equalized symbols.

[recLSIGData,failCheck,eqSym] = wlanLSIGRecover(rxLSIG,ones(416,1),0.01,'CBW160',cfgRec);

Verify that the L-SIG passed the failure checks.

failCheck

failCheck = logical
 0

Plot the equalized symbols. The 45 degree phase offset is visible.

 wlanLSIGRecover

1-243

scatterplot(eqSym)
grid

Input Arguments
rxSig — Received L-SIG field
vector | matrix

Received L-SIG field, specified as an NS-by-NR matrix. NS is the number of samples, and
NR is the number of receive antennas.

NS is proportional to the channel bandwidth.

1 Functions — Alphabetical List

1-244

ChannelBandwidth NS
'CBW5', 'CBW10', 'CBW20' 80
'CBW40' 160
'CBW80' 320
'CBW160' 640

Data Types: double

chEst — Channel estimate
vector | 3-D array

Channel estimate, specified as an NST-by-1-by-NR array. NST is the number of occupied
subcarriers, and NR is the number of receive antennas.

Channel Bandwidth NST

'CBW5', 'CBW10', 'CBW20' 52
'CBW40' 104
'CBW80' 208
'CBW160' 416

Data Types: double

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.
Data Types: double

cbw — Channel bandwidth
'CBW5' | 'CBW10' | 'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth in MHz, specified as 'CBW5', 'CBW10', 'CBW20', 'CBW40',
'CBW80', or 'CBW160'.
Example: 'CBW80' corresponds to a channel bandwidth of 80 MHz
Data Types: char | string

 wlanLSIGRecover

1-245

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters, specified as a wlanRecoveryConfig object. The function uses
these properties:

Note If cfgRec is not provided, the function uses the default values of the
wlanRecoveryConfig object.

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

Data Types: double

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

Equalization method, specified as 'MMSE' or 'ZF'.

1 Functions — Alphabetical List

1-246

• 'MMSE' indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF' indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'
Data Types: char | string

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char | string

Output Arguments
recBits — Recovered L-SIG information
binary vector

Recovered L-SIG information bits, returned as a 24-element column vector containing
binary data. The 24 elements correspond to the length of the L-SIG field.
Data Types: int8

failCheck — Failure check status
true | false

Failure check status, returned as a logical scalar. If L-SIG fails the parity check, or if its
first four bits do not correspond to one of the eight allowable data rates, failCheck is
true.
Data Types: logical

eqSym — Equalized symbols
vector

Equalized symbols, returned as 48-by-1 vector. There are 48 data subcarriers in the L-SIG
field.

 wlanLSIGRecover

1-247

Data Types: double

cpe — Common phase error
column vector

Common phase error in radians, returned as a scalar.

Definitions

L-SIG
The legacy signal (L-SIG) field is the third field of the 802.11 OFDM PLCP legacy
preamble. It consists of 24 bits that contain rate, length, and parity information. The L-
SIG is a component of VHT, HT, and non-HT PPDUs. It is transmitted using BPSK
modulation with rate 1/2 binary convolutional coding (BCC).

The L-SIG is one OFDM symbol with a duration that varies with channel bandwidth.

Channel
Bandwidth
(MHz)

Subcarrier
frequency
spacing, ΔF
(kHz)

Fast Fourier
Transform
(FFT) period
(TFFT = 1 / ΔF)

Guard Interval
(GI) Duration
(TGI = TFFT / 4)

L-SIG duration
(TSIGNAL = TGI +
TFFT)

20, 40, 80, and
160

312.5 3.2 μs 0.8 μs 4 μs

1 Functions — Alphabetical List

1-248

Channel
Bandwidth
(MHz)

Subcarrier
frequency
spacing, ΔF
(kHz)

Fast Fourier
Transform
(FFT) period
(TFFT = 1 / ΔF)

Guard Interval
(GI) Duration
(TGI = TFFT / 4)

L-SIG duration
(TSIGNAL = TGI +
TFFT)

10 156.25 6.4 μs 1.6 μs 8 μs
5 78.125 12.8 μs 3.2 μs 16 μs

The L-SIG contains packet information for the received configuration,

• Bits 0 through 3 specify the data rate (modulation and coding rate) for the non-HT
format.

Rate (bits
0–3)

Modulation Coding rate
(R)

Data Rate (Mb/s)
20 MHz
channel

bandwidth

10 MHz
channel

bandwidth

5 MHz
channel

bandwidth
1101 BPSK 1/2 6 3 1.5
1111 BPSK 3/4 9 4.5 2.25
0101 QPSK 1/2 12 6 3
0111 QPSK 3/4 18 9 4.5
1001 16-QAM 1/2 24 12 6
1011 16-QAM 3/4 36 18 9
0001 64-QAM 2/3 48 24 12
0011 64-QAM 3/4 54 27 13.5

 wlanLSIGRecover

1-249

For HT and VHT formats, the L-SIG rate bits are set to '1 1 0 1'. Data rate
information for HT and VHT formats is signaled in format-specific signaling fields.

• Bit 4 is reserved for future use.
• Bits 5 through 16:

• For non-HT, specify the data length (amount of data transmitted in octets) as
described in IEEE Std 802.11-2012, Table 18-1 and Section 9.23.4.

• For HT-mixed, specify the transmission time as described in IEEE Std 802.11-2012,
Section 20.3.9.3.5 and Section 9.23.4.

• For VHT, specify the transmission time as described in IEEE Std 802.11ac-2013,
Section 22.3.8.2.4.

• Bit 17 has the even parity of bits 0 through 16.
• Bits 18 through 23 contain all zeros for the signal tail bits.

Note Signaling fields added for HT (wlanHTSIG) and VHT (wlanVHTSIGA,
wlanVHTSIGB) formats provide data rate and configuration information for those formats.

• For the HT-mixed format, IEEE Std 802.11-2012, Section 20.3.9.4.3 describes HT-SIG
bit settings.

• For the VHT format, IEEE Std 802.11ac-2013, Section 22.3.8.3.3 and Section
22.3.8.3.6 describe bit settings for VHT-SIG-A and VHT-SIG-B, respectively.

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions — Alphabetical List

1-250

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanLLTF | wlanLLTFChannelEstimate | wlanLLTFDemodulate | wlanLSIG

Introduced in R2015b

 wlanLSIGRecover

1-251

wlanLSTF
Generate L-STF waveform

Syntax
y = wlanLSTF(cfg)

Description
y = wlanLSTF(cfg) generates an “L-STF” on page 1-25517 time-domain waveform
using the specified configuration object.

Examples

Generate L-STF Waveform

Generate the L-STF waveform for a 40 MHz single antenna VHT packet.

Create a VHT configuration object. Use this object to generate the L-STF waveform.

cfgVHT = wlanVHTConfig('ChannelBandwidth','CBW40');
y = wlanLSTF(cfgVHT);
size(y)

ans = 1×2

 320 1

plot(abs(y))
xlabel('Samples')
ylabel('Amplitude')

17. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1 Functions — Alphabetical List

1-252

The output L-STF waveform contains 320 samples for a 40 MHz channel bandwidth.

Input Arguments
cfg — Format configuration
wlanVHTConfig object | wlanHTConfig object | wlanNonHTConfig object

Format configuration, specified as a wlanVHTConfig, wlanHTConfig, or
wlanNonHTConfig object. For a specified format, the wlanLSTF function uses only the
object properties indicated.

 wlanLSTF

1-253

Transmission Format Applicable Object Properties
VHT ChannelBandwidth,

NumTransmitAntennas
HT ChannelBandwidth,

NumTransmitAntennas
non-HT
See note.

ChannelBandwidth,
NumTransmitAntennas

Note:

1 For non-HT format, when channel bandwidth is 5 MHz or 10 MHz,
NumTransmitAntennas is not applicable because only one transmit antenna is
permitted.

Example: wlanVHTConfig

Output Arguments
y — L-STF time-domain waveform
matrix

(“L-STF” on page 1-255) time-domain waveform, returned as an NS-by-NT matrix. NS is the
number of time-domain samples, and NT is the number of transmit antennas.

NS is proportional to the channel bandwidth. The time-domain waveform consists of two
symbols.

ChannelBandwidth NS

'CBW5', 'CBW10', 'CBW20' 160
'CBW40' 320
'CBW80' 640
'CBW160' 1280

Data Types: double
Complex Number Support: Yes

1 Functions — Alphabetical List

1-254

Definitions

L-STF
The legacy short training field (L-STF) is the first field of the 802.11 OFDM PLCP legacy
preamble. The L-STF is a component of VHT, HT, and non-HT PPDUs.

The L-STF duration varies with channel bandwidth.

Channel Bandwidth
(MHz)

Subcarrier
Frequency
Spacing, ΔF (kHz)

Fast Fourier
Transform (FFT)
Period
(TFFT = 1 / ΔF)

L-STF Duration
(TSHORT = 10 × TFFT /
 4)

20, 40, 80, and 160 312.5 3.2 μs 8 μs
10 156.25 6.4 μs 16 μs
5 78.125 12.8 μs 32 μs

Because the sequence has good correlation properties, it is used for start-of-packet
detection, for coarse frequency correction, and for setting the AGC. The sequence uses 12
of the 52 subcarriers that are available per 20 MHz channel bandwidth segment. For 5
MHz, 10 MHz, and 20 MHz bandwidths, the number of channel bandwidths segments is
1.

 wlanLSTF

1-255

Algorithms
The “L-STF” on page 1-255 is two OFDM symbols long and is the first field in the packet
structure for the VHT, HT, and non-HT OFDM formats. For algorithm details, refer to
IEEE Std 802.11ac-2013 [1], Section 22.3.8.2.2.

References
[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanLLTF | wlanNonHTConfig | wlanVHTConfig

Introduced in R2015b

1 Functions — Alphabetical List

1-256

wlanNonHTConfig
Create non-HT format configuration object

Syntax
cfgNonHT = wlanNonHTConfig
cfgNonHT = wlanNonHTConfig(Name,Value)

Description
cfgNonHT = wlanNonHTConfig creates a configuration object that initializes
parameters for an IEEE 802.11 non-high throughput (non-HT) format “PPDU” on page 1-
264.

For non-HT, subcarrier spacing and subcarrier allocation have channel bandwidth
dependencies. For more information, see “OFDM PLCP Timing Parameters” on page 1-
262.

cfgNonHT = wlanNonHTConfig(Name,Value) creates a non-HT format configuration
object that overrides the default settings using one or more Name,Value pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create Non-HT Configuration Object with Default Settings

Create a non-HT configuration object with default settings. After creating the object
update the number of transmit antennas.

cfgNHT = wlanNonHTConfig

cfgNHT =
 wlanNonHTConfig with properties:

 wlanNonHTConfig

1-257

 Modulation: 'OFDM'
 ChannelBandwidth: 'CBW20'
 MCS: 0
 PSDULength: 1000
 NumTransmitAntennas: 1

Update the number of transmit antennas to two.

cfgNHT.NumTransmitAntennas = 2

cfgNHT =
 wlanNonHTConfig with properties:

 Modulation: 'OFDM'
 ChannelBandwidth: 'CBW20'
 MCS: 0
 PSDULength: 1000
 NumTransmitAntennas: 2

Create Non-HT Format Configuration Object

Create a wlanNonHTConfig object for OFDM operation for a PSDU length of 2048 bytes.

cfgNHT = wlanNonHTConfig('Modulation','OFDM');
cfgNHT.PSDULength = 2048;
cfgNHT

cfgNHT =
 wlanNonHTConfig with properties:

 Modulation: 'OFDM'
 ChannelBandwidth: 'CBW20'
 MCS: 0
 PSDULength: 2048
 NumTransmitAntennas: 1

1 Functions — Alphabetical List

1-258

Create Non-HT Format Configuration Object for DSSS Modulation

Create a wlanNonHTConfig object for DSSS operation for a PSDU length of 2048 bytes.

cfgNHT = wlanNonHTConfig('Modulation','DSSS','PSDULength',2048)

cfgNHT =
 wlanNonHTConfig with properties:

 Modulation: 'DSSS'
 DataRate: '1Mbps'
 LockedClocks: 1
 PSDULength: 2048

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'Modulation','OFDM','MCS',7 specifies OFDM modulation with a
modulation and coding scheme of 7, which assigns 64QAM and a 3/4 coding rate for the
non-HT format packet.

Modulation — Modulation type for non-HT transmission
'OFDM' (default) | 'DSSS'

Modulation type for the non-HT transmission packet, specified as 'OFDM' or 'DSSS'.
Data Types: char | string

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW10' | 'CBW5'

Channel bandwidth in MHz for OFDM, specified as 'CBW20', 'CBW10', or 'CBW5'. The
default value of 'CBW20' sets the channel bandwidth to 20 MHz.

 wlanNonHTConfig

1-259

When channel bandwidth is 5 MHz or 10 MHz, only one transmit antenna is permitted
and NumTransmitAntennas is not applicable.
Data Types: char | string

MCS — OFDM modulation and coding scheme
0 (default) | integer from 0 to 7 | integer

OFDM modulation and coding scheme to use for transmitting the current packet,
specified as an integer from 0 to 7. The system configuration associated with an MCS
setting maps to the specified data rate.

MCS Modula
tion

Coding
Rate

Coded
bits per
subcarr

ier
(NBPSC)

Coded
bits per
OFDM
symbol
(NCBPS)

Data
bits per
OFDM
symbol
(NDBPS)

Data Rate (Mbps)
20 MHz
channel
bandwi

dth

10 MHz
channel
bandwi

dth

5 MHz
channel
bandwi

dth
0 BPSK 1/2 1 48 24 6 3 1.5
1 BPSK 3/4 1 48 36 9 4.5 2.25
2 QPSK 1/2 2 96 48 12 6 3
3 QPSK 3/4 2 96 72 18 9 4.5
4 16QAM 1/2 4 192 96 24 12 6
5 16QAM 3/4 4 192 144 36 18 9
6 64QAM 2/3 6 288 192 48 24 12
7 64QAM 3/4 6 288 216 54 27 13.5

See IEEE Std 802.11-2012, Table 18-4.
Data Types: double

DataRate — DSSS modulation data rate
'1Mbps' (default) | '2Mbps' | '5.5Mbps' | '11Mbps'

DSSS modulation data rate, specified as '1Mbps', '2Mbps', '5.5Mbps', or '11Mbps'.

• '1Mbps' uses differential binary phase shift keying (DBPSK) modulation with a 1
Mbps data rate.

• '2Mbps' uses differential quadrature phase shift keying (DQPSK) modulation with a 2
Mbps data rate.

1 Functions — Alphabetical List

1-260

• '5.5Mbps' uses complementary code keying (CCK) modulation with a 5.5 Mbps data
rate.

• '11Mbps' uses complementary code keying (CCK) modulation with an 11 Mbps data
rate.

For IEEE Std 802.11-2012, Section 16, only '1Mbps' and '2Mbps' apply
Data Types: char | string

Preamble — DSSS modulation preamble type
'Long' (default) | 'Short'

DSSS modulation preamble type, specified as 'Long' or 'Short'.

• When DataRate is '1Mbps', the Preamble setting is ignored and 'Long' is used.
• When DataRate is greater than '1Mbps', the Preamble property is available and

can be set to 'Long' or 'Short'.

For IEEE Std 802.11-2012, Section 16, 'Short' does not apply.
Data Types: char | string

LockedClocks — Clock locking indication for DSSS modulation
true (default) | false

Clock locking indication for DSSS modulation, specified as a logical. Bit 2 of the SERVICE
field is the Locked Clock Bit. A true setting indicates that the PHY implementation
derives its transmit frequency clock and symbol clock from the same oscillator. For more
information, see IEEE Std 802.11-2012, Section 17.2.3.5 and Section 19.1.3.

Note

• IEEE Std 802.11-2012, Section 19.3.2.2, specifies locked clocks is required for all ERP
systems when transmitting at the ERP-PBCC rate or at a data rate described in Section
17. Therefore to model ERP systems, set LockedClocks to true.

Data Types: logical

PSDULength — Number of bytes carried in the user payload
1000 (default) | integer from 1 to 4095 | integer

 wlanNonHTConfig

1-261

Number of bytes carried in the user payload, specified as an integer from 1 to 4095.
Data Types: double

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas for OFDM, specified as a scalar integer from 1 to 8.

When channel bandwidth is 5 MHz or 10 MHz, NumTransmitAntennas is not applicable
because only one transmit antenna is permitted.
Data Types: double

Output Arguments
cfgNonHT — Non-HT PPDU configuration
wlanNonHTConfig object

Non-HT “PPDU” on page 1-264 configuration, returned as a wlanNonHTConfig object.
The properties of cfgNonHT are specified in wlanNonHTConfig.

Definitions

OFDM PLCP Timing Parameters
IEEE Std 802.11™-2012 [1], Section 1818 specifies OFDM PLCP 20 MHz, 10 MHz, and 5
MHz channel bandwidth operation.

Timing parameters associated with the OFDM PLCP are listed in IEEE Std 802.11™-2012
[1], Table 18-5.

18. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1 Functions — Alphabetical List

1-262

Parameter Value 20 MHz
channel
bandwidth

10 MHz
channel
bandwidth

5 MHz channel
bandwidth

NSD: Number of
data subcarriers

48 48 48 48

NSP: Number of
pilot subcarriers

4 4 4 4

NST: Number of
subcarriers,
total

NSD + NSP 52 52 52

ΔF: Subcarrier
frequency
spacing

(Channel BW in
MHz) / 64

0.3125 MHz
(= 20 / 64)

0.15625 MHz
(= 10 / 64)

0.078125 MHz
(= 5 / 64)

TFFT: Inverse
Fast Fourier
Transform
(IFFT) / Fast
Fourier
Transform (FFT)
period

1 / ΔF 3.2 μs 6.4 μs 12.8 μs

TPREAMBLE: PLCP
preamble
duration

TSHORT + TLONG 16 μs 32 μs 64 μs

TSIGNAL: Duration
of the L-SIG
symbol

TGI + TFFT 4.0 μs 8.0 μs 16.0 μs

TGI: GI duration TFFT/4 0.8 μs 1.6μs 3.2 μs
TGI2: Training
symbol GI
duration

TFFT/2 1.6 μs 3.2μs 6.4 μs

TSYM: Symbol
interval

TGI + TFFT 4 μs 8 μs 16 μs

TSHORT: L-STF
duration

10 × TFFT /4 8 μs 16 μs 32 μs

 wlanNonHTConfig

1-263

Parameter Value 20 MHz
channel
bandwidth

10 MHz
channel
bandwidth

5 MHz channel
bandwidth

TLONG: L-LTF
duration

TGI2 + 2 × TFFT 8 μs 16 μs 32 μs

Note The standard refers to operation at:

• 10 MHz as “half-clocked”.
• 5 MHz as “quarter-clocked”.

PPDU
The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

1 Functions — Alphabetical List

1-264

See Also
wlanDMGConfig | wlanHTConfig | wlanS1GConfig | wlanVHTConfig |
wlanWaveformGenerator

Topics
“Packet Size and Duration Dependencies”

Introduced in R2015b

 wlanNonHTConfig

1-265

wlanNonHTData
Generate non-HT-Data field waveform

Syntax
y = wlanNonHTData(psdu,cfg)
y = wlanNonHTData(psdu,cfg,scramInit)

Description
y = wlanNonHTData(psdu,cfg) generates the “non-HT-Data field” on page 1-27019

time-domain waveform for the input “PSDU” on page 1-270 bits.

y = wlanNonHTData(psdu,cfg,scramInit) uses scramInit for the scrambler
initialization state.

Examples

Generate Non-HT-Data Waveform

Generate the waveform for a 20MHz non-HT-Data field for 36 Mbps.

Create a non-HT configuration object and assign MCS to 5.

cfg = wlanNonHTConfig('MCS',5);

Assign random data to the PSDU and generate the data field waveform.

psdu = randi([0 1],cfg.PSDULength*8,1);
y = wlanNonHTData(psdu,cfg);
size(y)

19. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1 Functions — Alphabetical List

1-266

ans = 1×2

 4480 1

Input Arguments
psdu — PLCP service data unit
vector

PLCP service data unit (“PSDU” on page 1-270), specified as an Nbits-by-1 vector, where
Nbits = PSDULength × 8. “PSDU” on page 1-270 vector can range from 1 byte to 4095
bytes, as specified by PSDULength.
Data Types: double

cfg — Format configuration
wlanNonHTConfig object

Format configuration, specified as a wlanNonHTConfig object. The wlanNonHTData
function uses the wlanNonHTConfig object properties associated with the 'OFDM'
setting for Modulation.

Non-HT Format Configuration

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW10' | 'CBW5'

Channel bandwidth in MHz for OFDM, specified as 'CBW20', 'CBW10', or 'CBW5'. The
default value of 'CBW20' sets the channel bandwidth to 20 MHz.

When channel bandwidth is 5 MHz or 10 MHz, only one transmit antenna is permitted
and NumTransmitAntennas is not applicable.
Data Types: char | string

MCS — OFDM modulation and coding scheme
0 (default) | integer from 0 to 7 | integer

OFDM modulation and coding scheme to use for transmitting the current packet,
specified as an integer from 0 to 7. The system configuration associated with an MCS
setting maps to the specified data rate.

 wlanNonHTData

1-267

MCS Modula
tion

Coding
Rate

Coded
bits per
subcarr

ier
(NBPSC)

Coded
bits per
OFDM
symbol
(NCBPS)

Data
bits per
OFDM
symbol
(NDBPS)

Data Rate (Mbps)
20 MHz
channel
bandwi

dth

10 MHz
channel
bandwi

dth

5 MHz
channel
bandwi

dth
0 BPSK 1/2 1 48 24 6 3 1.5
1 BPSK 3/4 1 48 36 9 4.5 2.25
2 QPSK 1/2 2 96 48 12 6 3
3 QPSK 3/4 2 96 72 18 9 4.5
4 16QAM 1/2 4 192 96 24 12 6
5 16QAM 3/4 4 192 144 36 18 9
6 64QAM 2/3 6 288 192 48 24 12
7 64QAM 3/4 6 288 216 54 27 13.5

See IEEE Std 802.11-2012, Table 18-4.
Data Types: double

PSDULength — Number of bytes carried in the user payload
1000 (default) | integer from 1 to 4095 | integer

Number of bytes carried in the user payload, specified as an integer from 1 to 4095.
Data Types: double

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas for OFDM, specified as a scalar integer from 1 to 8.

When channel bandwidth is 5 MHz or 10 MHz, NumTransmitAntennas is not applicable
because only one transmit antenna is permitted.
Data Types: double

scramInit — Scrambler initialization state
93 (default) | integer from 1 to 127 | binary vector

1 Functions — Alphabetical List

1-268

Scrambler initialization state for each packet generated, specified as an integer from 1 to
127 or as the corresponding binary vector of length seven. The default value of 93 is the
example state given in IEEE Std 802.11-2012, Section L.1.5.2.

The scrambler initialization used on the transmission data follows the process described
in IEEE Std 802.11-2012, Section 18.3.5.5 and IEEE Std 802.11ad-2012, Section 21.3.9.
The header and data fields that follow the scrambler initialization field (including data
padding bits) are scrambled by XORing each bit with a length-127 periodic sequence
generated by the polynomial S(x) = x7+x4+1. The octets of the PSDU (Physical Layer
Service Data Unit) are placed into a bit stream, and within each octet, bit 0 (LSB) is first
and bit 7 (MSB) is last. The generation of the sequence and the XOR operation are shown
in this figure:

Conversion from integer to bits uses left-MSB orientation. For the initialization of the
scrambler with decimal 1, the bits are mapped to the elements shown.

Element X7 X6 X5 X4 X3 X2 X1

Bit Value 0 0 0 0 0 0 1

 wlanNonHTData

1-269

To generate the bit stream equivalent to a decimal, use de2bi. For example, for decimal
1:

de2bi(1,7,'left-msb')
ans =

 0 0 0 0 0 0 1

Example: [1; 0; 1; 1; 1; 0; 1] conveys the scrambler initialization state of 93 as a
binary vector.
Data Types: double | int8

Output Arguments
y — Non-HT-Data field time-domain waveform
matrix

Non-HT-Data field time-domain waveform, returned as an NS-by-NT matrix. NS is the
number of time domain samples, and NT is the number of transmit antennas.

Definitions

PSDU
Physical layer convergence procedure (PLCP) service data unit (PSDU). This field is
composed of a variable number of octets. The minimum is 0 (zero) and the maximum is
2500. For more information, see IEEE Std 802.11™-2012, Section 15.3.5.7.

non-HT-Data field
The non-high throughput data (non-HT data) field is used to transmit MAC frames and is
composed of a service field, a PSDU, tail bits, and pad bits.

1 Functions — Alphabetical List

1-270

• Service field — Contains 16 zeros to initialize the data scrambler.
• PSDU — Variable-length field containing the PLCP service data unit (PSDU).
• Tail — Tail bits required to terminate a convolutional code. The field uses six zeros for

the single encoding stream.
• Pad Bits — Variable-length field required to ensure that the non-HT data field

contains an integer number of symbols.

Algorithms

non-HT-Data Field Processing
The “non-HT-Data field” on page 1-270 follows the L-SIG in the packet structure. For
algorithm details, refer to IEEE Std 802.11-2012 [1], Section 18.3.5. The “non-HT-Data
field” on page 1-270 includes the user payload in the PSDU plus 16 service bits, 6 tail
bits, and additional padding bits as required to fill out the last OFDM symbol. The
wlanNonHTData function performs transmitter processing on the “non-HT-Data field” on
page 1-270 and outputs the time-domain waveform.

 wlanNonHTData

1-271

1 Functions — Alphabetical List

1-272

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanLSIG | wlanNonHTConfig | wlanNonHTDataRecover

Introduced in R2015b

 wlanNonHTData

1-273

wlanNonHTDataRecover
Recover non-HT data

Syntax
recData = wlanNonHTDataRecover(rxSig,chEst,noiseVarEst,cfg)
recData = wlanNonHTDataRecover(rxSig,chEst,noiseVarEst,cfg,cfgRec)
[recData,eqSym] = wlanNonHTDataRecover(___)
[recData,eqSym,cpe] = wlanNonHTDataRecover(___)

Description
recData = wlanNonHTDataRecover(rxSig,chEst,noiseVarEst,cfg) returns the
recovered “Non-HT-Data field” on page 1-28020 bits, given received signal rxSig, channel
estimate data chEst, noise variance estimate noiseVarEst, and wlanNonHTConfig
object cfg.

Note This function only supports data recovery for OFDM modulation.

recData = wlanNonHTDataRecover(rxSig,chEst,noiseVarEst,cfg,cfgRec)
specifies the recovery algorithm parameters using wlanRecoveryConfig object
cfgRec.

[recData,eqSym] = wlanNonHTDataRecover(___) returns the equalized symbols,
eqSym, using the arguments from the previous syntaxes.

[recData,eqSym,cpe] = wlanNonHTDataRecover(___) also returns the common
phase error, cpe.

20. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

1 Functions — Alphabetical List

1-274

Examples

Recover Non-HT Data Bits

Create a non-HT configuration object having a PSDU length of 2048 bytes. Generate the
corresponding data sequence.

cfg = wlanNonHTConfig('PSDULength',2048);
txBits = randi([0 1],8*cfg.PSDULength,1);
txSig = wlanNonHTData(txBits,cfg);

Pass the signal through an AWGN channel with a signal-to-noise ratio of 15 dB.

rxSig = awgn(txSig,15);

Recover the data and determine the number of bit errors.

rxBits = wlanNonHTDataRecover(rxSig,ones(52,1),0.05,cfg);
[numerr,ber] = biterr(rxBits,txBits)

numerr = 0

ber = 0

Recover Non-HT Data Bits Using Zero-Forcing Algorithm

Create a non-HT configuration object having a 1024-byte PSDU length. Generate the
corresponding non-HT data sequence.

cfg = wlanNonHTConfig('PSDULength',1024);
txBits = randi([0 1],8*cfg.PSDULength,1);
txSig = wlanNonHTData(txBits,cfg);

Pass the signal through an AWGN channel with a signal-to-noise ratio of 10 dB.

rxSig = awgn(txSig,10);

Create a data recovery object that specifies the use of the zero-forcing algorithm.

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF');

 wlanNonHTDataRecover

1-275

Recover the data and determine the number of bit errors.

rxBits = wlanNonHTDataRecover(rxSig,ones(52,1),0.1,cfg,cfgRec);
[numerr,ber] = biterr(rxBits,txBits)

numerr = 0

ber = 0

Recover Non-HT Data in Fading Channel

Configure a non-HT data object.

cfg = wlanNonHTConfig;

Generate and transmit a non-HT PSDU.

txPSDU = randi([0 1],8*cfg.PSDULength,1);
txSig = wlanNonHTData(txPSDU,cfg);

Generate an L-LTF for channel estimation.

txLLTF = wlanLLTF(cfg);

Create an 802.11g channel with a 3 Hz maximum Doppler shift and a 100 ns RMS path
delay. Disable the reset before filtering option so that the L-LTF and data fields use the
same channel realization.

ch802 = comm.RayleighChannel('SampleRate',20e6,'MaximumDopplerShift',3,'PathDelays',100e-9);

Pass the L-LTF and data signals through an 802.11g channel with AWGN.

rxLLTF = awgn(ch802(txLLTF),10);
rxSig = awgn(ch802(txSig),10);

Demodulate the L-LTF and use it to estimate the fading channel.

dLLTF = wlanLLTFDemodulate(rxLLTF,cfg);
chEst = wlanLLTFChannelEstimate(dLLTF,cfg);

Recover the non-HT data using the L-LTF channel estimate and determine the number of
bit errors in the transmitted packet.

1 Functions — Alphabetical List

1-276

rxPSDU = wlanNonHTDataRecover(rxSig,chEst,0.1,cfg);

[numErr,ber] = biterr(txPSDU,rxPSDU)

numErr = 0

ber = 0

Input Arguments
rxSig — Received non-HT data signal
vector | matrix

Received non-HT data signal, specified as a matrix of size NS-by-NR. NS is the number of
samples and NR is the number of receive antennas. NS can be greater than the length of
the data field signal.
Data Types: double

chEst — Channel estimate data
vector | 3-D array

Channel estimate data, specified as an NST-by-1-by-NR array. NST is the number of
occupied subcarriers, and NR is the number of receive antennas.
Data Types: double

noiseVarEst — Noise variance estimate
nonnegative scalar

Estimate of the noise variance, specified as a nonnegative scalar.
Example: 0.7071
Data Types: double

cfg — Configure non-HT format parameters
wlanNonHTConfig object

Non-HT format configuration, specified as a wlanNonHTConfig object. The
wlanHTDataRecover function uses the following wlanNonHTConfig object properties:

 wlanNonHTDataRecover

1-277

MCS — OFDM modulation and coding scheme
0 (default) | integer from 0 to 7 | integer

OFDM modulation and coding scheme to use for transmitting the current packet,
specified as an integer from 0 to 7. The system configuration associated with an MCS
setting maps to the specified data rate.

MCS Modula
tion

Coding
Rate

Coded
bits per
subcarr

ier
(NBPSC)

Coded
bits per
OFDM
symbol
(NCBPS)

Data
bits per
OFDM
symbol
(NDBPS)

Data Rate (Mbps)
20 MHz
channel
bandwi

dth

10 MHz
channel
bandwi

dth

5 MHz
channel
bandwi

dth
0 BPSK 1/2 1 48 24 6 3 1.5
1 BPSK 3/4 1 48 36 9 4.5 2.25
2 QPSK 1/2 2 96 48 12 6 3
3 QPSK 3/4 2 96 72 18 9 4.5
4 16QAM 1/2 4 192 96 24 12 6
5 16QAM 3/4 4 192 144 36 18 9
6 64QAM 2/3 6 288 192 48 24 12
7 64QAM 3/4 6 288 216 54 27 13.5

See IEEE Std 802.11-2012, Table 18-4.
Data Types: double

PSDULength — Number of bytes carried in the user payload
1000 (default) | integer from 1 to 4095 | integer

Number of bytes carried in the user payload, specified as an integer from 1 to 4095.
Data Types: double

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters, specified as a wlanRecoveryConfig object. The object
properties include:

1 Functions — Alphabetical List

1-278

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

Data Types: double

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

Equalization method, specified as 'MMSE' or 'ZF'.

• 'MMSE' indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF' indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'
Data Types: char | string

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

 wlanNonHTDataRecover

1-279

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char | string

Output Arguments
recData — Recovered binary output data
binary column vector

Recovered binary output data, returned as a column vector of length 8×NPSDU, where
NPSDU is the length of the PSDU in bytes. See wlanNonHTConfig for PSDULength details.
Data Types: int8

eqSym — Equalized symbols
column vector | matrix

Equalized symbols, returned as an NSD-by-NSYM matrix. NSD is the number of data
subcarriers, and NSYM is the number of OFDM symbols in the non-HT data field.
Data Types: double

cpe — Common phase error
column vector

Common phase error in radians, returned as a column vector having length NSYM. NSYM is
the number of OFDM symbols in the “Non-HT-Data field” on page 1-280.

Definitions

Non-HT-Data field
The non-high throughput data (non-HT data) field is used to transmit MAC frames and is
composed of a service field, a PSDU, tail bits, and pad bits.

1 Functions — Alphabetical List

1-280

• Service field — Contains 16 zeros to initialize the data scrambler.
• PSDU — Variable-length field containing the PLCP service data unit (PSDU).
• Tail — Tail bits required to terminate a convolutional code. The field uses six zeros for

the single encoding stream.
• Pad Bits — Variable-length field required to ensure that the non-HT data field

contains an integer number of symbols.

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 wlanNonHTDataRecover

1-281

Use in a MATLAB Function block is not supported.

See Also
wlanNonHTConfig | wlanNonHTData | wlanRecoveryConfig

Introduced in R2015b

1 Functions — Alphabetical List

1-282

wlanPacketDetect
OFDM packet detection using L-STF

Syntax
startOffset = wlanPacketDetect(rxSig,cbw)
startOffset = wlanPacketDetect(rxSig,cbw,offset)
startOffset = wlanPacketDetect(rxSig,cbw,offset,threshold)
[startOffset,M] = wlanPacketDetect(___)

Description
startOffset = wlanPacketDetect(rxSig,cbw) returns the offset from the start of
the input waveform to the start of the detected preamble, given a received time-domain
waveform and the channel bandwidth. For more information, see “Packet Detection
Processing” on page 1-290.

Note This function supports packet detection of OFDM modulated signals only.

startOffset = wlanPacketDetect(rxSig,cbw,offset) specifies an offset from
the start of the received waveform and indicates where the autocorrelation processing
begins. The returned startOffset is relative to the input offset.

startOffset = wlanPacketDetect(rxSig,cbw,offset,threshold) specifies the
threshold which the decision statistic must meet or exceed to detect a packet.

[startOffset,M] = wlanPacketDetect(___) also returns the decision statistics of
the packet detection algorithm for the received time-domain waveform, using any of the
input arguments in the previous syntaxes.

Examples

 wlanPacketDetect

1-283

Detect 802.11n Packet

Detect a received 802.11n packet at a signal-to-noise ratio (SNR) of 20 dB.

Create an HT configuration object and TGn channel object. Generate a transmit
waveform.

cfgHT = wlanHTConfig;
tgn = wlanTGnChannel('LargeScaleFadingEffect','None');

txWaveform = wlanWaveformGenerator([1;0;0;1],cfgHT);

Pass the waveform through the TGn channel with an SNR of 20 dB. Detect the start of the
packet.

snr = 20;
fadedSig = tgn(txWaveform);
rxWaveform = awgn(fadedSig,snr,0);

startOffset = wlanPacketDetect(rxWaveform,cfgHT.ChannelBandwidth)

startOffset = 1

The packet is detected at the first sample of the received waveform, specifically the
returned startOffset indicates an offset of zero samples from the start of the received
waveform.

Detect Delayed 802.11ac Packet

Detect a received 802.11ac packet that has been delayed. Specify an offset of 25 to begin
the autocorrelation process.

Create an VHT configuration object and generate the transmit waveform.

cfgVHT = wlanVHTConfig;

txWaveform = wlanWaveformGenerator([1;0;0;1],cfgVHT,...
 'WindowTransitionTime',0);

Delay the signal by appending zeros at the start. Specify an offset of 25 for the beginning
of autocorrelation processing. Detect the start of the packet.

1 Functions — Alphabetical List

1-284

rxWaveform = [zeros(100,1);txWaveform];
offset = 25;
startOffset = wlanPacketDetect(rxWaveform,cfgVHT.ChannelBandwidth,offset)

startOffset = 48

Calculate the detected packet offset by adding the returned startOffset and the input
offset.

pktOffset = offset + startOffset

pktOffset = 73

The offset from the first sample of the received waveform to the start of the packet is
detected to be 73 samples. This coarse approximation of the packet-start offset is useful
for determining where to begin autocorrelation for the first packet and for subsequent
packets when a multipacket waveform is transmitted.

Detect Delayed 802.11a Packet

Detect a received 802.11a packet that has been delayed. No channel impairments are
added. Set the input offset to 5 and use a threshold setting very close to 1.

Create an non-HT configuration object. Generate the transmit waveform.

cfgNonHT = wlanNonHTConfig;

txWaveform = wlanWaveformGenerator([1;0;0;1],cfgNonHT,...
 'WindowTransitionTime',0);

Delay the signal by appending zeros at the start. Set an initial offset of 5 and a threshold
very close to 1. Detect the delayed packet.

rxWaveform = [zeros(20,1);txWaveform];

offset = 5;
threshold = 1-10*eps;
startOffset = wlanPacketDetect(rxWaveform,...
 cfgNonHT.ChannelBandwidth,offset,threshold)

startOffset = 15

 wlanPacketDetect

1-285

Calculate the detected packet offset by adding the returned startOffset and the input
offset.

totalOffset = offset + startOffset

totalOffset = 20

Using a threshold close to 1 and an undistorted received waveform increases the
accuracy of the packet detect location. The detected offset from the first sample of the
received waveform to the start of the packet is determined to be 20 samples.

Generate WLAN Packet Decision Statistics

Return the decision statistics of a WLAN waveform that consists of five 802.11a packets.

Create a non-HT configuration object and a five-packet waveform. Delay the waveform by
4000 samples.

cfgNonHT = wlanNonHTConfig;
txWaveform = wlanWaveformGenerator([1;0;0;1],cfgNonHT, ...
 'NumPackets',5,'IdleTime',20e-6);

rxWaveform = [zeros(4000,1);txWaveform];

Setting the threshold input to 1, generates packet decision statistics for the entire
waveform and suppresses the startOffset output. Plot the decision statistics, M.

offset = 0;
threshold = 1;
[startOffset,M] = wlanPacketDetect(rxWaveform,cfgNonHT.ChannelBandwidth,...
 offset,threshold);
plot(M)

1 Functions — Alphabetical List

1-286

Since threshold = 1, the decision statistics for the entire waveform are included in the
output M. The decision statistics show five peaks. The peaks corresponds to the first
sample of each packet detected. View startOffset.

startOffset

startOffset =

 []

The returned startOffset is empty because threshold was set to 1.

 wlanPacketDetect

1-287

Input Arguments
rxSig — Received time-domain signal
matrix

Received time-domain signal, specified as an NS-by-NR matrix. NR is the number of receive
antennas. NS represents the number of time-domain samples in the received signal.
Data Types: double
Complex Number Support: Yes

cbw — Channel bandwidth
'CBW5' | 'CBW10' | 'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth in MHz, specified as 'CBW5', 'CBW10', 'CBW20', 'CBW40',
'CBW80', or 'CBW160'.
Data Types: char | string

offset — Number of samples offset
0 (default) | nonnegative integer

Number of samples offset from the beginning of the received waveform, specified as a
nonnegative integer. offset defines the starting sample for the autocorrelation process.
offset is useful for advancing through and detecting the startOffset sample for
successive packets in multipacket waveforms.

Note Since the packet detection searches forward in time, the first packet will not be
detected if the initial setting for offset is beyond the first “L-STF” on page 1-289.

Data Types: double

threshold — Decision statistic threshold
0.5 (default) | real scalar | from >0 to 1

Decision statistic threshold that must be met or exceeded to detect a packet, specified as
a real scalar greater than 0 and less than or equal to 1.
Data Types: double

1 Functions — Alphabetical List

1-288

Output Arguments
startOffset — Number of samples offset to the start of packet
nonnegative integer | []

Number of samples offset to the start of packet, returned as a nonnegative integer. This
value, shifted by offset, indicates the detected start of a packet from the first sample of
rxSig.

• An empty value, [], is returned if no packet is detected or if threshold is set to 1.
• Zero is returned if there is no delay, specifically the packet is detected at the first

sample of the waveform.

M — Decision statistics
vector

Decision statistics based on autocorrelation of the input waveform, returned as an N-by-1
real vector. The length of N depends on the starting location of the autocorrelation
process and the number of samples until a packet is detected. When threshold is set to
1, M returns the decision statistics of the full waveform and startOffset returns empty.

For more information, see “Packet Detection Processing” on page 1-290.

Definitions

L-STF
The legacy short training field (L-STF) is the first field of the 802.11 OFDM PLCP legacy
preamble. The L-STF is a component of VHT, HT, and non-HT PPDUs.

 wlanPacketDetect

1-289

The L-STF duration varies with channel bandwidth.

Channel Bandwidth
(MHz)

Subcarrier
Frequency
Spacing, ΔF (kHz)

Fast Fourier
Transform (FFT)
Period
(TFFT = 1 / ΔF)

L-STF Duration
(TSHORT = 10 × TFFT /
 4)

20, 40, 80, and 160 312.5 3.2 μs 8 μs
10 156.25 6.4 μs 16 μs
5 78.125 12.8 μs 32 μs

Because the sequence has good correlation properties, it is used for start-of-packet
detection, for coarse frequency correction, and for setting the AGC. The sequence uses 12
of the 52 subcarriers that are available per 20 MHz channel bandwidth segment. For 5
MHz, 10 MHz, and 20 MHz bandwidths, the number of channel bandwidths segments is
1.

Algorithms

Packet Detection Processing
The packet detection algorithm is implemented as a double sliding window as described
in OFDM Wireless LANs [1], Chapter 2. The autocorrelation of “L-STF” on page 1-289
short training symbols is used to return an estimated packet-start offset. In a robust

1 Functions — Alphabetical List

1-290

system, the next stage will refine this estimate with symbol timing detection using the L-
LTF.

As shown in the figure, the received signal, rn, is delayed then correlated in two sliding
windows independently. The packet detection processing output provides decision
statistics (mn) of the received waveform.

• Window C autocorrelates between the received signal and the delayed version, cn.

c r rn

l

N

K

D

n k l n k D l

R

=

= =

-

+ + +Â Â
1 0

1

, ,
*

• Window P calculates the energy received in the autocorrelation window, pn.

p rn

l

N

k

D

n k D l

R

=

= =

-

+ +ÂÂ
1 0

1
2| |,

• The decision statistics, mn, normalize the autocorrelation by pn so that the decision
statistic is not dependent on the absolute received power level.

m
c

p
n

n

n

=

()

| |2

2

The decision statistics provide visual information resulting from the autocorrelation
process that is useful when selecting the appropriate threshold value for the input

 wlanPacketDetect

1-291

waveform. The recommended default value of 0.5 for threshold favors false
detections over missed detections considering a range of SNRs and various antenna
configurations.

In the sliding window calculations, D is the period of the “L-STF” on page 1-289 short
training symbols and NR is the number of receive antennas.

Packet detection processing follows this flow chart:

1 Functions — Alphabetical List

1-292

LSTF_SYMBOL is the length of an “L-STF” on page 1-289 symbol.

Note This function supports packet detection of OFDM modulated signals only.

 wlanPacketDetect

1-293

References
[1] Terry, J., and J. Heiskala. OFDM Wireless LANs: A Theoretical and Practical Guide.

Indianapolis, IN: Sams, 2002.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanCoarseCFOEstimate | wlanFieldIndices

Introduced in R2016b

1 Functions — Alphabetical List

1-294

wlanRecoveryConfig
Create data recovery configuration object

Syntax
cfgRec = wlanRecoveryConfig
cfgRec = wlanRecoveryConfig(Name,Value)

Description
cfgRec = wlanRecoveryConfig creates a configuration object that initializes
parameters for use in recovery of signal and data information.

cfgRec = wlanRecoveryConfig(Name,Value) creates an information recovery
configuration object that overrides the default settings using one or more Name,Value
pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create wlanRecoveryConfig Object

Create an information recovery configuration object using a Name,Value pairs to update
the equalization method and OFDM symbol sampling offset.

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF', ...
 'OFDMSymbolOffset',0.5)

cfgRec =
 wlanRecoveryConfig with properties:

 OFDMSymbolOffset: 0.5000

 wlanRecoveryConfig

1-295

 EqualizationMethod: 'ZF'
 PilotPhaseTracking: 'PreEQ'
 MaximumLDPCIterationCount: 12
 EarlyTermination: 0

Input Arguments
Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'OFDMSymbolOffset',0.25,'EqualizationMethod','ZF'

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

1 Functions — Alphabetical List

1-296

Data Types: double

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

Equalization method, specified as 'MMSE' or 'ZF'.

• 'MMSE' indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF' indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'
Data Types: char | string

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char | string

MaximumLDPCIterationCount — Maximum number of decoding iterations in
LDPC
12 (default) | positive scalar integer

Maximum number of decoding iterations in LDPC, specified as a positive scalar integer.
This parameter is applicable when channel coding is set to LDPC. For information on
channel coding options, see wlanVHTConfig or wlanHTConfig for 802.11 format of
interest.
Data Types: double

EarlyTermination — Enable early termination of LDPC decoding
false (default) | true

Enable early termination of LDPC decoding, specified as a logical. This parameter is
applicable when channel coding is set to LDPC.

• When set to false, LDPC decoding completes the number of iterations specified by
MaximumLDPCIterationCount, regardless of parity check status.

 wlanRecoveryConfig

1-297

• When set to true, LDPC decoding terminates when all parity-checks are satisfied.

For information on channel coding options, see wlanVHTConfig or wlanHTConfig for
802.11 format of interest.

Output Arguments
cfgRec — Data recovery configuration
wlanRecoveryConfig object

Data recovery configuration, returned as a wlanRecoveryConfig object. The properties
of cfgRec are specified in wlanRecoveryConfig.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTDataRecover | wlanHTSIGRecover | wlanLSIGRecover |
wlanNonHTDataRecover | wlanVHTDataRecover | wlanVHTSIGARecover |
wlanVHTSIGBRecover

Introduced in R2015b

1 Functions — Alphabetical List

1-298

wlanS1GConfig
Create S1G format configuration object

Syntax
cfgS1G = wlanS1GConfig
cfgS1G = wlanS1GConfig(Name,Value)

Description
cfgS1G = wlanS1GConfig creates a configuration object that initializes parameters for
an IEEE 802.11 sub 1 GHz (S1G) format “PPDU” on page 1-309.

cfgS1G = wlanS1GConfig(Name,Value) creates an S1G format configuration object
that overrides the default settings using one or more Name,Value pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create wlanS1GConfig Object for Single User

Create an S1G configuration object with default settings for a single user. Override the
default by specifying a 4 MHz channel bandwidth and short preamble configuration.

cfgS1G = wlanS1GConfig;
cfgS1G.ChannelBandwidth = 'CBW4';
cfgS1G.Preamble = 'Short';
cfgS1G

cfgS1G =
 wlanS1GConfig with properties:

 wlanS1GConfig

1-299

 ChannelBandwidth: 'CBW4'
 Preamble: 'Short'
 NumUsers: 1
 NumTransmitAntennas: 1
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 STBC: 0
 MCS: 0
 APEPLength: 256
 GuardInterval: 'Long'
 PartialAID: 37
 UplinkIndication: 0
 Color: 0
 TravelingPilots: 0
 ResponseIndication: 'None'
 RecommendSmoothing: 1

 Read-only properties:
 ChannelCoding: 'BCC'
 PSDULength: 261

Create wlanS1GConfig Object for Two Users

Create an S1G configuration object that assigns a 2 MHz bandwidth and two users. Use a
combination of Name,Value pairs and in-line initialization to change default settings. In
vector-valued properties, each element applies to a specific user.

cfgMU = wlanS1GConfig('ChannelBandwidth','CBW2', ...
 'Preamble','Long', ...
 'NumUsers',2, ...
 'GroupID',2, ...
 'NumTransmitAntennas', 2);
cfgMU.NumSpaceTimeStreams = [1 1];
cfgMU.MCS = [4 8];
cfgMU.APEPLength = [1024 2048];
cfgMU

cfgMU =
 wlanS1GConfig with properties:

 ChannelBandwidth: 'CBW2'

1 Functions — Alphabetical List

1-300

 Preamble: 'Long'
 NumUsers: 2
 UserPositions: [0 1]
 NumTransmitAntennas: 2
 NumSpaceTimeStreams: [1 1]
 SpatialMapping: 'Direct'
 MCS: [4 8]
 APEPLength: [1024 2048]
 GuardInterval: 'Long'
 GroupID: 2
 TravelingPilots: 0
 ResponseIndication: 'None'

 Read-only properties:
 ChannelCoding: 'BCC'
 PSDULength: [1031 2065]

NumUsers is set to 2 and the user-dependent properties are two-element vectors.

Create wlanS1GConfig Object and Return Packet Format

Create an S1G configuration object with default settings for a single user and change the
default property settings by using dot notation. Use the packetFormat object function
to access the S1G packet format of the object.

Create an S1G configuration object with default settings. By default, the configuration
object creates properties to model the short S1G packet format.

cfgS1G = wlanS1GConfig;
packetFormat(cfgS1G)

ans =
'S1G-Short'

Modify the defaults by using the dot notation to specify a long preamble.

cfgS1G.Preamble = 'Long';
packetFormat(cfgS1G)

ans =
'S1G-Long'

 wlanS1GConfig

1-301

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ChannelBandwidth','CBW4','NumUsers',2 specifies a channel
bandwidth of 4 MHz and two users for the S1G format packet.

ChannelBandwidth — Channel bandwidth
'CBW2' (default) | 'CBW1' | 'CBW4' | 'CBW8' | 'CBW16'

Channel bandwidth, specified as 'CBW1', 'CBW2', 'CBW4', 'CBW8', or 'CBW16'. If the
transmission has multiple users, the same channel bandwidth is applied to all users.
Example: 'CBW16' sets the channel bandwidth to 16 MHz.
Data Types: char | string

Preamble — Preamble type
'Short' (default) | 'Long'

Preamble type, specified as 'Short' or 'Long'. This property applies only when
ChannelBandwidth is not 'CBW1'.
Data Types: char | string

NumUsers — Number of users
1 (default) | 2 | 3 | 4

Number of users, specified as 1, 2, 3, or 4. (NUsers)
Data Types: double

UserPositions — Position of users
[0 1] (default) | row vector of integers from 0 to 3 in strictly increasing order

Position of users, specified as an integer row vector with length equal to NumUsers and
element values from 0 to 3 in a strictly increasing order. This property applies when
NumUsers > 1.

1 Functions — Alphabetical List

1-302

Example: [0 2 3] indicates positions for three users, where the first user occupies
position 0, the second user occupies position 2, and the third user occupies position 3.
Data Types: double

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 4

Number of transmit antennas, specified as a scalar integer from 1 to 4.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 4 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector. (Nsts)

• For a single user, the number of space-time streams is an integer scalar from 1 to 4.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of integers

from 1 to 4, where NUsers ≤ 4. The sum total of space-time streams for all users,
Nsts_Total, must not exceed four.

Example: [1 1 2] indicates number of space-time streams for three users, where the
first user gets 1 space-time stream, the second user gets 1 space-time stream, and the
third user gets 2 space-time streams. The total number of space-time streams assigned is
4.
Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.
Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
apply a beamforming steering matrix, and to rotate and scale the constellation mapper
output vector. If applicable, scale the space-time block coder output instead.

 wlanS1GConfig

1-303

SpatialMappingMatrix applies when the SpatialMapping property is set to
'Custom'. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

• When specified as a scalar, a constant value applies to all the subcarriers.
• When specified as a matrix, the size must be NSTS_Total-by-NT. The spatial mapping

matrix applies to all the subcarriers. NSTS_Total is the sum of space-time streams for all
users, and NT is the number of transmit antennas.

• When specified as a 3-D array, the size must be NST-by-NSTS_Total-by-NT. NST is the sum
of the occupied data (NSD) and pilot (NSP) subcarriers, as determined by
ChannelBandwidth. NSTS_Total is the sum of space-time streams for all users. NT is the
number of transmit antennas.

NST increases with channel bandwidth.

ChannelBandwidt
h

Number of
Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW1' 26 24 2
'CBW2' 56 52 4
'CBW4' 114 108 6
'CBW8' 242 234 8
'CBW16' 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.
Data Types: double
Complex Number Support: Yes

Beamforming — Enable beamforming in a long preamble packet
true (default) | false

Enable beamforming in a long preamble packet, specified as a logical. Beamforming is
performed when this setting is true. This property applies for a long preamble
(Preamble = 'Long') with NumUsers = 1 and SpatialMapping = 'Custom'. The
SpatialMappingMatrix property specifies the beamforming steering matrix.
Data Types: logical

1 Functions — Alphabetical List

1-304

STBC — Enable space-time block coding
false (default) | true

Enable space-time block coding (STBC) of the PPDU data field, specified as a logical.
STBC transmits multiple copies of the data stream across assigned antennas.

• When set to false, no STBC is applied to the data field, and the number of space-time
streams is equal to the number of spatial streams.

• When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

See IEEE 802.11ac-2013, Section 22.3.10.9.4 for further description.

Note STBC is relevant for single-user transmissions only.

Data Types: logical

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 10 | 1-by-NUsers vector of integers

Modulation and coding scheme used in transmitting the current packet, specified as a
scalar or vector.

• For a single user, the MCS value is a scalar integer from 0 to 10.
• For multiple users, MCS is a 1-by-NUsers vector of integers or a scalar with values from

0 to 10, where NUsers ≤ 4.

MCS Modulation Coding Rate Comment
0 BPSK 1/2
1 QPSK 1/2
2 QPSK 3/4
3 16QAM 1/2
4 16QAM 3/4
5 64QAM 2/3
6 64QAM 3/4
7 64QAM 5/6

 wlanS1GConfig

1-305

MCS Modulation Coding Rate Comment
8 256QAM 3/4
9 256QAM 5/6
10 BPSK 1/2 Applies only for

ChannelBandwidth
 = 'CBW1'

Data Types: double

APEPLength — Number of bytes in the A-MPDU pre-EOF padding
256 (default) | integer from 0 to 65,535 | vector of integers

Number of bytes in the A-MPDU pre-EOF padding, specified as an integer scalar or
vector.

• For a single user, APEPLength is a scalar integer from 0 to 65,535.
• For multiple users, APEPLength is a 1-by-NUsers vector of integers or a scalar with

values from 0 to 65,535, where NUsers ≤ 4.
• APEPLength = 0 for a null data packet (NDP).

APEPLength is used internally to determine the number of OFDM symbols in the data
field.

Note Only aggregated data transmission is supported.

Data Types: double

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Note For S1G, the first OFDM symbol within the data field always has a long guard
interval, even when GuardInterval is set to 'Short'.

1 Functions — Alphabetical List

1-306

Data Types: char | string

GroupID — Group identification number
1 (default) | integer from 1 to 62

Group identification number, specified as an integer scalar from 1 to 62. The group
identification number is signaled during a multi-user transmission. Therefore this
property applies for a long preamble (Preamble = 'Long') and when NumUsers is
greater than 1.
Data Types: double

PartialAID — Abbreviated indication of the PSDU recipient
37 (default) | integer from 0 to 511

Abbreviated indication of the PSDU recipient, specified as an integer scalar from 0 to
511.

• For an uplink transmission, the partial identification number is the last nine bits of the
basic service set identifier (BSSID) and must be an integer from 0 to 511.

• For a downlink transmission, the partial identification of a client is an identifier that
combines the association ID with the BSSID of its serving AP and must be an integer
from 0 to 63.

For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

UplinkIndication — Enable uplink indication
false (default) | true

Enable uplink indication, specified as a logical. Set UplinkIndication to true for
uplink transmission or false for downlink transmission. This property applies when
ChannelBandwidth is not 'CBW1' and NumUsers = 1.
Data Types: logical

Color — Access point color identifier
0 (default) | integer scalar from 0 to 7

Access point (AP) color identifier, specified as an integer from 0 to 7. An AP includes a
Color number for the basic service set (BSS). An S1G station (STA) can use the Color
setting to determine if the transmission is within a BSS it is associated with. An S1G STA

 wlanS1GConfig

1-307

can terminate the reception process for transmissions received from a BSS that it is not
associated with. This property applies when ChannelBandwidth is not 'CBW1',
NumUsers = 1, and UplinkIndication = false.
Data Types: double

TravelingPilots — Enable traveling pilots
false (default) | true

Enable traveling pilots, specified as a logical. Set TravelingPilots to true for
nonconstant pilot locations. Traveling pilots allow a receiver to track a changing channel
due to Doppler spread.
Data Types: logical

ResponseIndication — Response indication type
'None' (default) | 'NDP' | 'Normal' | 'Long'

Response indication type, specified as 'None', 'NDP', 'Normal', or 'Long'. This
information is used to indicate the presence and type of frame that will be sent a short
interframe space (SIFS) after the current frame transmission. The response indication
field is set based on the value of ResponseIndication and transmitted in;

• The SIG2 field of the S1G_SHORT preamble
• The SIG-A-2 field of the S1G_LONG preamble
• The SIG field of the S1G_1M preamble

Data Types: char | string

RecommendSmoothing — Recommend smoothing for channel estimation
true (default) | false

Recommend smoothing for channel estimation, specified as a logical.

• If the frequency profile is nonvarying across the channel , the receiver sets this
property to true. In this case, frequency-domain smoothing is recommended as part
of channel estimation.

• If the frequency profile varies across the channel, the receiver sets this property to
false. In this case, frequency-domain smoothing is not recommended as part of
channel estimation.

Data Types: logical

1 Functions — Alphabetical List

1-308

Output Arguments
cfgS1G — S1G PPDU configuration
wlanS1GConfig object

S1G “PPDU” on page 1-309 configuration, returned as a wlanS1GConfig object. The
properties of cfgS1G are described in wlanS1GConfig.

Definitions

PPDU
The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanDMGConfig | wlanHTConfig | wlanNonHTConfig |
wlanS1GConfig.packetFormat | wlanVHTConfig | wlanWaveformGenerator

Topics
“Packet Size and Duration Dependencies”

 wlanS1GConfig

1-309

Introduced in R2016b

1 Functions — Alphabetical List

1-310

wlanS1GConfig.packetFormat
Return S1G packet format

Syntax
format = packetFormat(cfg)

Description
format = packetFormat(cfg) returns the S1G packet format , based on the
configuration of the S1G object.

Input Arguments
cfg — S1G PPDU configuration
wlanS1GConfig object

S1G PPDU configuration, specified as a wlanS1GConfig object.

Output Arguments
format — S1G packet format
S1G-1M | S1G-Short | S1G-Long

S1G packet format , specified as 'S1G-1M', 'S1G-Short', or 'S1G-Long'.

 wlanS1GConfig.packetFormat

1-311

Examples
Create wlanS1GConfig Object and Return Packet Format

Create an S1G configuration object with default settings for a single user and change the
default property settings by using dot notation. Use the packetFormat object function
to access the S1G packet format of the object.

Create an S1G configuration object with default settings. By default, the configuration
object creates properties to model the short S1G packet format.

cfgS1G = wlanS1GConfig;
packetFormat(cfgS1G)

ans =
'S1G-Short'

Modify the defaults by using the dot notation to specify a long preamble.

cfgS1G.Preamble = 'Long';
packetFormat(cfgS1G)

ans =
'S1G-Long'

See Also
wlanS1GConfig

Introduced in R2017b

1 Functions — Alphabetical List

1-312

wlanSampleRate
Return the nominal sample rate

Syntax
fs = wlanSampleRate(cfgFormat)

Description
fs = wlanSampleRate(cfgFormat) returns the nominal sample rate for the specified
format configuration object cfgFormat.

Examples

Sample Rate for VHT format

Get the sample rate for a VHT format configuration in samples per second.

cfgVHT = wlanVHTConfig;
fs = wlanSampleRate(cfgVHT)

fs = 80000000

Input Arguments
cfgFormat — Packet format configuration
wlanDMGConfig object | wlanS1GConfig object | wlanVHTConfig object |
wlanHTConfig object | wlanNonHTConfig object

Packet format configuration, specified as a wlanDMGConfig, wlanS1GConfig,
wlanVHTConfig, wlanHTConfig, or wlanNonHTConfig object. The type of cfgFormat

 wlanSampleRate

1-313

object determines the nominal sample rate. For a description of the properties and valid
settings for the various packet format configuration objects, see:

• wlanDMGConfig
• wlanS1GConfig
• wlanVHTConfig
• wlanHTConfig
• wlanNonHTConfig

Output Arguments
fs — Sample rate
scalar

Sample rate in samples per second, returned as an scalar.

See Also
wlanDMGConfig | wlanHTConfig | wlanNonHTConfig | wlanS1GConfig |
wlanVHTConfig

Introduced in R2017b

1 Functions — Alphabetical List

1-314

wlanScramble
Scramble and descramble binary input sequence

Syntax
y = wlanScramble(bits,scramInit)

Description
y = wlanScramble(bits,scramInit) scrambles or descrambles the binary input
bits for the specified initial scramble state, using a 127-length frame-synchronous
scrambler. The frame-synchronous scrambler uses the generator polynomial defined in
IEEE 802.11-2012, Section 18.3.5.5 and IEEE 802.11ad-2012, Section 21.3.9. The same
scrambler is used to scramble bits at the transmitter and descramble bits at the receiver.

Examples

Scramble and Descramble bits

Create the scrambler initialization and the input sequence of random bits.

scramInit = 93;
bits = randi([0,1],1000,1);

Scramble and descramble the bits by using the scrambler initialization.

scrambledData = wlanScramble(bits,scramInit);
descrambledData = wlanScramble(scrambledData,scramInit);

Verify that the descrambled data matches the original data.

isequal(bits,descrambledData)

 wlanScramble

1-315

ans = logical
 1

Input Arguments
bits — Input sequence
column vector | matrix

Input sequence to be scrambled, specified as a binary column vector or matrix.
Data Types: double | int8

scramInit — Initial state of scrambler
integer from 1 to 127 | 7-by-1 binary column vector

Initial state of the scrambler, specified as an integer from 1 to 127, or a corresponding 7-
by-1 column vector of binary bits.

The scrambler initialization used on the transmission data follows the process described
in IEEE Std 802.11-2012, Section 18.3.5.5 and IEEE Std 802.11ad-2012, Section 21.3.9.
The header and data fields that follow the scrambler initialization field (including data
padding bits) are scrambled by XORing each bit with a length-127 periodic sequence
generated by the polynomial S(x) = x7+x4+1. The octets of the PSDU (Physical Layer
Service Data Unit) are placed into a bit stream, and within each octet, bit 0 (LSB) is first
and bit 7 (MSB) is last. The generation of the sequence and the XOR operation are shown
in this figure:

1 Functions — Alphabetical List

1-316

Conversion from integer to bits uses left-MSB orientation. For the initialization of the
scrambler with decimal 1, the bits are mapped to the elements shown.

Element X7 X6 X5 X4 X3 X2 X1

Bit Value 0 0 0 0 0 0 1

To generate the bit stream equivalent to a decimal, use de2bi. For example, for decimal
1:

de2bi(1,7,'left-msb')
ans =

 0 0 0 0 0 0 1

Same scramInit is applied across all the columns of bits when the input is a matrix.
Example: [0 0 0 0 0 0 1]'
Data Types: double

 wlanScramble

1-317

Output Arguments
y — Scrambled or descrambled output
column vector | matrix

Scrambled or descrambled output, returned as a binary column vector or matrix with the
same size and type as bits.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
comm.Descrambler | comm.Scrambler | wlanWaveformGenerator

Introduced in R2017b

1 Functions — Alphabetical List

1-318

wlanSegmentDeparseBits
Segment-deparse data bits

Syntax
y = wlanSegmentDeparseBits(bits,cbw,numES,numCBPS,numBPSCS)

Description
y = wlanSegmentDeparseBits(bits,cbw,numES,numCBPS,numBPSCS) performs
the inverse operation of the segment parsing defined in IEEE 802.11ac-2013 Section
22.3.10.7 when cbw is 'CBW16' or 'CBW160'.

Note Segment deparsing of the bits applies only when the channel bandwidth is either
16 MHz or 160 MHz, and is bypassed for the remaining channel bandwidths (as stated in
the aforementioned section of IEEE802.11ac-2013). Therefore, when cbw is any accepted
value other than 'CBW16' or 'CBW160', wlanSegmentParseBits returns the input
unchanged.

Examples

Segment-Deparse Coded Bits in Two OFDM Symbols

Segment-deparse the coded bits for a VHT configuration (with a channel bandwidth of
160 MHz and three spatial streams) into two OFDM symbols.

Define the input parameters. Set the channel bandwidth to 160 MHz, the number of
coded bits per OFDM symbol to 2808, the number of spatial streams to 3, the number of
encoded streams to 1, the number of coded bits per subcarrier per spatial stream to 2,
and the number of OFDM symbols to 2. Calculate the number of coded bits per OFDM
symbol per spatial stream by dividing the number of coded bits per OFDM symbol by the
number of spatial streams.

 wlanSegmentDeparseBits

1-319

chanBW = 'CBW160';
numCBPS = 2808;
numSS = 3;
numES = 1;
numBPSCS = 2;
numSym = 2;
numCBPSS = numCBPS/numSS;

Create the input sequence of bits.

bits = randi([0 1],numCBPSS*numSym,numSS);

Perform segment parsing on the bits.

parsedBits = wlanSegmentParseBits(bits,chanBW,numES,numCBPS,numBPSCS);
size(parsedBits)

ans = 1×3

 936 3 2

Perform segment deparsing on the parsed bits.

 deparsedBits = wlanSegmentDeparseBits(parsedBits,chanBW,numES,numCBPS,numBPSCS);
 size(deparsedBits)

ans = 1×2

 1872 3

Verify that the deparsed data matches the original data.

isequal(bits,deparsedBits)

ans = logical
 1

1 Functions — Alphabetical List

1-320

Input Arguments
bits — Input sequence
matrix | 3-D array

Input sequence of deinterleaved bits, specified as an (NCBPSSI×NSYM)-by-NSS-by-NSEG array,
where:

• NCBPSSI is the number of coded bits per OFDM symbol per spatial stream per
interleaver block.

• NSYM is the number of OFDM symbols.
• NSS is the number of spatial streams.
• NSEG is the number of segments. When cbw is 'CBW16' or 'CBW160', NSEG must be 2.

Otherwise it must be 1.

Data Types: double | int8

cbw — Channel bandwidth
'CBW1' | 'CBW2' | 'CBW4' | 'CBW8' | 'CBW16 | 'CBW20' | 'CBW40' | 'CBW80' |
'CBW160'

Channel bandwidth in MHz, specified as 'CBW1','CBW2', 'CBW4','CBW8', 'CBW16',
'CBW20', 'CBW40', 'CBW80', or 'CBW160'.
Example: 'CBW160'
Data Types: char | string

numES — Number of encoded streams
1 to 9 | 12

Number of encoded streams, specified as an integer from 1 to 9, or 12.
Data Types: double

numCBPS — Number of coded bits per OFDM symbol
positive integer

Number of coded bits per OFDM symbol, specified as a positive integer. When cbw is
'CBW16' or 'CBW160', numCBPS must be an integer equal to 468×NBPSCS×NSS, where:

• NBPSCS is the number of coded bits per subcarrier per spatial stream.

 wlanSegmentDeparseBits

1-321

• NSS is the number of spatial streams. It accounts for the number of columns (second
dimension) of the input bits.

Data Types: double

numBPSCS — Number of coded bits per subcarrier per spatial stream
1 | 2 | 4 | 6 | 8

Number of coded bits per subcarrier per spatial stream, specified as log2(M), where M is
the modulation order. Therefore, numBPSCS must equal:

• 1 for a BPSK modulation
• 2 for a QPSK modulation
• 4 for a 16QAM modulation
• 6 for a 64QAM modulation
• 8 for a 256QAM modulation

Data Types: double

Output Arguments
y — Merged segments of data
matrix

Merged segments of data, specified as an (NCBPSS×NSYM)-by-NSS matrix, where:

• NCBPSS is the number of coded bits per OFDM symbol per spatial stream.
• NSYM is the number of OFDM symbols.
• NSS is the number of spatial streams.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

1 Functions — Alphabetical List

1-322

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanSegmentParseBits

Introduced in R2017b

 wlanSegmentDeparseBits

1-323

wlanSegmentDeparseSymbols
Segment-deparse data subcarriers

Syntax
y = wlanSegmentDeparseSymbols(sym,cbw)

Description
y = wlanSegmentDeparseSymbols(sym,cbw) performs segment deparsing on the
input sym as per IEEE 802.11ac-2013, Section 22.3.10.9.3, when cbw is 'CBW16' or
'CBW160'.

Note Segment deparsing of the data subcarriers applies only when the channel
bandwidth is either 16 MHz or 160 MHz, and is bypassed for the remaining channel
bandwidths (as stated in the aforementioned section of IEEE802.11ac-2013). Therefore,
when cbw is any accepted value other than 'CBW16' or 'CBW160',
wlanSegmentDeparseSymbols returns the input unchanged.

Examples

Segment-Deparse Symbols

Segment-deparse the symbols in four OFDM symbols for a VHT configuration with a
channel bandwidth of 16 MHz and 3 spatial streams.

Define the input parameters. Since the channel bandwidth is 16 MHz, set the number of
data subcarriers to 468 and the number of frequency segments to two.

chanBW = 'CBW16';
numSD = 468;
numSym = 4;

1 Functions — Alphabetical List

1-324

numSS = 3;
numSeg = 2;

Create the input sequence of symbols.

data = randi([0 1],numSD/numSeg,numSym,numSS,numSeg);

Segment-deparse the symbols into data subcarriers. The first dimension of the parsed
output accounts for the total number of data subcarriers.

deparsedData = wlanSegmentDeparseSymbols(data,chanBW);
size(deparsedData)

ans = 1×3

 468 4 3

Get Symbol Order for a VHT Configuration

Get the symbol order after stream deparsing a sequence for a VHT configuration with a
channel bandwidth of 160 MHz and one spatial stream.

Define the input parameters. Since the channel bandwidth is 160 MHz, set the number of
data subcarriers to 468 and the number of frequency segments to two.

chanBW = 'CBW160';
numSD = 468;
numSym = 1;
numSS = 1;
numSeg = 2;

Create the input sequence of symbols.

sequence = (1:numSD*numSym*numSS).';
inp = reshape(sequence, numSD/numSeg, numSym, numSS, numSeg);

Segment-deparse the symbols. The output is a column vector with the sequence order of
the symbols.

deparsedData = wlanSegmentDeparseSymbols(inp, chanBW);
deparsedData(1:10)

 wlanSegmentDeparseSymbols

1-325

ans = 10×1

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

Input Arguments
sym — Input sequence
4-D array

Input sequence of frequency segments to deparse, specified as an (NSD/NSEG)-by-NSYMby-
NSS-by-NSEG array, where:

• NSD is the number of data subcarriers.
• NSEG is the number of segments. When cbw is 'CBW16' or 'CBW160', NSEG is 2.

Otherwise it is 1.
• NSYM is the number of OFDM symbols.
• NSS is the number of spatial streams.

Data Types: double
Complex Number Support: Yes

cbw — Channel bandwidth
'CBW1' | 'CBW2' | 'CBW4' | 'CBW8' | 'CBW16 | 'CBW20' | 'CBW40' | 'CBW80' |
'CBW160'

Channel bandwidth in MHz, specified as 'CBW1','CBW2', 'CBW4','CBW8', 'CBW16',
'CBW20', 'CBW40', 'CBW80', or 'CBW160'.
Example: 'CBW160'

1 Functions — Alphabetical List

1-326

Data Types: char | string

Output Arguments
y — Deparsed frequency segments
3-D array

Deparsed frequency segments, specified as an NSD-by-NSYM-by-NSS array, where:

• NSD is the number of data subcarriers.
• NSYM is the number of OFDM symbols.
• NSS is the number of spatial streams.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanSegmentParseSymbols

Introduced in R2017b

 wlanSegmentDeparseSymbols

1-327

wlanSegmentParseBits
Segment-parse data bits

Syntax
y = wlanSegmentParseBits(bits,cbw,numES,numCBPS,numBPSCS)

Description
y = wlanSegmentParseBits(bits,cbw,numES,numCBPS,numBPSCS) performs
segment parsing on the input bits as per IEEE 802.11ac-2013, Section 22.3.10.7, when
cbw is 'CBW16' or 'CBW160'.

Note Segment parsing of the bits applies only when the channel bandwidth is either 16
MHz or 160 MHz, and is bypassed for the remaining channel bandwidths (as stated in the
aforementioned section of IEEE802.11ac-2013). Therefore, when cbw is any accepted
value other than 'CBW16' or 'CBW160', wlanSegmentParseBits returns the input
unchanged.

Examples

Segment-Parse Bits in Two OFDM Symbols

Segment-parse coded bits for a VHT configuration (with a channel bandwidth of 160 MHz
and three spatial streams) into two OFDM symbols.

Define the input parameters. Set the channel bandwidth to 160 MHz, the number of
coded bits per OFDM symbol to 2808, the number of spatial streams to 3, the number of
encoded streams to 1, the number of coded bits per subcarrier per spatial stream to 2,
and the number of OFDM symbols to 2. Calculate the number of coded bits per OFDM
symbol per spatial stream by dividing the number of coded bits per OFDM symbol by the
number of spatial streams.

1 Functions — Alphabetical List

1-328

chanBW = 'CBW160';
numCBPS = 2808;
numSS = 3;
numES = 1;
numBPSCS = 2;
numSym = 2;
numCBPSS = numCBPS/numSS;

Create the input sequence of bits.

bits = randi([0 1],numCBPSS*numSym,numSS,'int8');

Perform segment parsing on the bits.

parsedBits = wlanSegmentParseBits(bits,chanBW,numES,numCBPS,numBPSCS);

The parsed sequence is a three-dimensional array of bits.

size(parsedBits)

ans = 1×3

 936 3 2

parsedBits(1:5,:,:)

ans = 5x3x2 int8 array
ans(:,:,1) =

 1 0 1
 0 1 1
 1 0 1
 0 0 0
 1 0 1

ans(:,:,2) =

 1 1 1
 1 1 1
 0 0 1
 1 1 0
 1 0 0

 wlanSegmentParseBits

1-329

Get Bit Order of OFDM Symbol

Get the bit order after the segment parsing of an OFDM symbol of an S1G configuration
with a channel bandwidth of 16 MHz, and two spatial streams.

Define the input parameters. Set the channel bandwidth to 16 MHz, the number of coded
bits per OFDM symbol to 1872, the number of spatial streams to 2, the number of
encoded streams to 1, the number of coded bits per subcarrier per spatial stream to 2 and
the number of OFDM symbols to 2. Calculate the number of coded bits per OFDM symbol
per spatial stream by dividing the number of coded bits per OFDM symbol by the number
of spatial streams.

chanBW = 'CBW16';
numCBPS = 1872;
numSS = 2;
numES = 1;
numBPSCS = 2;
numSym = 1;
numCBPSS = numCBPS/numSS;

Create the input sequence.

sequence = (1:numCBPS*numSym).';
inp = reshape(sequence,numCBPSS*numSym,numSS);

Perform segment parsing on the sequence.

parsedSequence = wlanSegmentParseBits(inp,chanBW,numES,numCBPS,numBPSCS);

The parsed sequence is a three-dimensional array containing the corresponding bit order.

size(parsedSequence)

ans = 1×3

 468 2 2

1 Functions — Alphabetical List

1-330

Input Arguments
bits — Input sequence
matrix

Input sequence of stream-parsed bits, specified as an (NCBPSS×NSYM)-by-NSS matrix,
where:

• NCBPSS is the number of coded bits per OFDM symbol per spatial stream.
• NSYM is the number of OFDM symbols.
• NSS is the number of spatial streams.

Data Types: double | int8

cbw — Channel bandwidth
'CBW1' | 'CBW2' | 'CBW4' | 'CBW8' | 'CBW16 | 'CBW20' | 'CBW40' | 'CBW80' |
'CBW160'

Channel bandwidth in MHz, specified as 'CBW1','CBW2', 'CBW4','CBW8', 'CBW16',
'CBW20', 'CBW40', 'CBW80', or 'CBW160'.
Example: 'CBW160'
Data Types: char | string

numES — Number of encoded streams
1 to 9 | 12

Number of encoded streams, specified as an integer from 1 to 9, or 12.
Data Types: double

numCBPS — Number of coded bits per OFDM symbol
positive integer

Number of coded bits per OFDM symbol, specified as a positive integer. When cbw is
'CBW16' or 'CBW160', numCBPS must be an integer equal to 468×NBPSCS×NSS, where:

• NBPSCS is the number of coded bits per subcarrier per spatial stream.
• NSS is the number of spatial streams. It accounts for the number of columns (second

dimension) of the input bits.

Data Types: double

 wlanSegmentParseBits

1-331

numBPSCS — Number of coded bits per subcarrier per spatial stream
1 | 2 | 4 | 6 | 8

Number of coded bits per subcarrier per spatial stream, specified as log2(M), where M is
the modulation order. Therefore, numBPSCS must equal:

• 1 for a BPSK modulation
• 2 for a QPSK modulation
• 4 for a 16QAM modulation
• 6 for a 64QAM modulation
• 8 for a 256QAM modulation

Data Types: double

Output Arguments
y — Segment-parsed bits
matrix | 3-D array

Segment-parsed bits, specified as an (NCBPSSI×NSYM)-by-NSS-by-NSEG array, where:

• NCBPSSI is the number of coded bits per OFDM symbol per spatial stream per
interleaver block.

• NSYM is the number of OFDM symbols.
• NSS is the number of spatial streams.
• NSEG is the number of segments. When cbw is 'CBW16' or 'CBW160', NSEG is 2.

Otherwise it is 1.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

1 Functions — Alphabetical List

1-332

Use in a MATLAB Function block is not supported.

See Also
wlanSegmentDeparseBits

Introduced in R2017b

 wlanSegmentParseBits

1-333

wlanSegmentParseSymbols
Segment-parse data subcarriers

Syntax
y = wlanSegmentParseSymbols(sym,cbw)

Description
y = wlanSegmentParseSymbols(sym,cbw) performs the inverse operation of the
segment deparsing on the input sym defined in IEEE 802.11ac-2013, Section 22.3.10.9.3,
when cbw is 'CBW16' or 'CBW160'.

Note Segment parsing of the data subcarriers applies only when the channel bandwidth
is either 16 MHz or 160 MHz, and is bypassed for the remaining channel bandwidths (as
stated in the aforementioned section of IEEE802.11ac-2013). Therefore, when cbw is any
accepted value other than 'CBW16' or 'CBW160', wlanSegmentParseSymbols returns
the input unchanged.

Examples

Segment-Parse Symbols

Segment-deparse and segment-parse the symbols in four OFDM symbols for a VHT
configuration with a channel bandwidth of 160 MHz and two spatial streams.

Define the input parameters. Since the channel bandwidth is 160 MHz, set the number of
data subcarriers to 468 and the number of frequency segments to two.

chanBW = 'CBW160';
numSD = 468;
numSym = 4;

1 Functions — Alphabetical List

1-334

numSS = 2;
numSeg = 2;

Create the input sequence of symbols.

data = randi([0 1],numSD/numSeg,numSym,numSS,numSeg);

Segment-deparse the symbols into data subcarriers. The first dimension of the parsed
output accounts for the total number of data subcarriers.

deparsedData = wlanSegmentDeparseSymbols(data,chanBW);
size(deparsedData)

ans = 1×3

 468 4 2

Segment-parse the symbols into data subcarriers. The size of the output is equal to the
size of the original sequence.

segments = wlanSegmentParseSymbols(deparsedData,chanBW);
size(segments)

ans = 1×4

 234 4 2 2

Input Arguments
sym — Input sequence
3-D array

Input sequence of equalized data to be segmented, specified as an NSD-by-NSYM-by-NSS
array, where:

• NSD is the number of data subcarriers.
• NSYM is the number of OFDM symbols.
• NSS is the number of spatial streams.

Data Types: double

 wlanSegmentParseSymbols

1-335

Complex Number Support: Yes

cbw — Channel bandwidth
'CBW1' | 'CBW2' | 'CBW4' | 'CBW8' | 'CBW16 | 'CBW20' | 'CBW40' | 'CBW80' |
'CBW160'

Channel bandwidth in MHz, specified as 'CBW1','CBW2', 'CBW4','CBW8', 'CBW16',
'CBW20', 'CBW40', 'CBW80', or 'CBW160'.
Example: 'CBW160'
Data Types: char | string

Output Arguments
y — Frequency segments
4-D array

Frequency segments, specified as an (NSD/NSEG)-by-NSYMby-NSS-by-NSEG array, where:

• NSD is the number of data subcarriers.
• NSEG is the number of segments. When cbw is 'CBW16' or 'CBW160', NSEG is 2.

Otherwise it is 1.
• NSYM is the number of OFDM symbols.
• NSS is the number of spatial streams.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

1 Functions — Alphabetical List

1-336

See Also
wlanSegmentDeparseSymbols

Introduced in R2017b

 wlanSegmentParseSymbols

1-337

wlanStreamDeparse
Stream-deparse binary input

Syntax
y = wlanStreamDeparse(bits,numES,numCBPS,numBPSCS)

Description
y = wlanStreamDeparse(bits,numES,numCBPS,numBPSCS) deparses the spatial
streams specified in bits to form encoded streams. This operation is the inverse of the
one defined in IEEE 802.11-2012 Section 20.3.11.8.2 and IEEE 802.11ac-2013 Section
22.3.10.6.

Examples

Stream-Deparse Input Bits

Stream-deparse five OFDM symbols with two spatial streams into one encoded stream.

Define the input parameters. Set the number of coded bits per OFDM symbol to 432, the
number of coded bits per subcarrier per spatial stream to 2, the number of encoded
streams to 1, the number of spatial streams to 2 and the number of OFDM symbols to 5.

numCBPS = 432;
numBPSCS = 2;
numES = 1;
numSS = 2;
numSym = 5;

Create a parsed input of hard bits.

parsed = randi([0 1],numCBPS/numSS*numSym,numSS)

parsed = 1080×2

1 Functions — Alphabetical List

1-338

 1 0
 1 1
 0 1
 1 1
 1 1
 0 1
 0 1
 1 0
 1 1
 1 1
 ⋮

Stream-deparse the bits.

deparsed = wlanStreamDeparse(parsed,numES,numCBPS,numBPSCS)

deparsed = 2160×1

 1
 0
 1
 1
 0
 1
 1
 1
 1
 1
 ⋮

Input Arguments
bits — Input sequence
matrix

Input sequence of stream-parsed data, specified as a (NCBPSS×NSYM)-by-NSS matrix, where:

• NCBPSS is the number of coded bits per OFDM symbol per spatial stream.
• NSYM is the number of OFDM symbols.

 wlanStreamDeparse

1-339

• N SS is the number of spatial streams.

Data Types: double | int8

numES — Number of encoded streams
integer from 1 to 9, 12

Number of encoded streams, specified as a integer from 1 to 9, or 12.
Data Types: double

numCBPS — Number of coded bits per OFDM symbol
positive integer

Number of coded bits per OFDM symbol, specified as an integer equal to
(NBPSCS×NSS×NSD), where:

• NBPSCS is the number of coded bits per subcarrier per spatial stream. See numBPSCS.
• NSS is the number of spatial streams.
• NSD is the number of complex data numbers per frequency segment, specified as 24,

52, 108, 234, or 468.

Data Types: double

numBPSCS — Number of coded bits per subcarrier per spatial stream
1 | 2 | 4 | 6 | 8

Number of coded bits per subcarrier per spatial stream, specified as 1, 2, 4, 6, or 8.
Data Types: double

Output Arguments
y — Stream-deparsed output
matrix

Stream-deparsed output data, returned as an (NCBPS×NSYM)-by-NES matrix, where:

• NCBPS is the number of coded bits per OFDM symbol.
• NSYM is the number of OFDM symbols.

1 Functions — Alphabetical List

1-340

• NES is the number of encoded streams.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanStreamParse

Introduced in R2017b

 wlanStreamDeparse

1-341

wlanStreamParse
Stream-parse binary input

Syntax
y = wlanStreamParse(bits,numSS,numCBPS,numBPSCS)

Description
y = wlanStreamParse(bits,numSS,numCBPS,numBPSCS) parses the encoded bits
into spatial streams, as defined in IEEE 802.11-2012 Section 20.3.11.8.2 and IEEE
802.11ac-2013 Section 22.3.10.6.

Examples

Stream-Parse Input Bits

Stream-parse three OFDM symbols with two encoded streams into five spatial streams.

Define the input parameters. Set the number of coded bits per OFDM symbol to 3240, the
number of coded bits per subcarrier per spatial stream to 6, the number of encoded
streams to 2, the number of spatial streams to 5 and the number of OFDM symbols to 3.

numCBPS = 3240;
numBPSCS = 6;
numES = 2;
numSS = 5;
numSym = 3;

Create a random sequence of bits.

bits = randi([0 1],numCBPS*numSym/numES,numES,'int8');

Stream-parse the random bits.

1 Functions — Alphabetical List

1-342

parsedData = wlanStreamParse(bits,numSS,numCBPS,numBPSCS);

Verify the size of the parsed bits.

size(parsedData)

ans = 1×2

 1944 5

Get Bit Order After Stream Parsing

Get the bit order of an OFDM symbol after stream-parsing it from one encoded stream
into three spatial streams.

Define the input parameters. Set the number of coded bits per OFDM symbol to 156, the
number of coded bits per subcarrier per spatial stream to 1, the number of encoded
streams to 1, the number of spatial streams to 3 and the number of OFDM symbols to 1.

numCBPS = 156;
numBPSCS = 1;
numES = 1;
numSS = 3;
numSym = 1;

Create an input sequence of ordered symbols with the proper dimensions.

sequence = (1:numCBPS*numSym).';
inp = reshape(sequence,numCBPS*numSym/numES,numES)

inp = 156×1

 1
 2
 3
 4
 5
 6
 7
 8
 9

 wlanStreamParse

1-343

 10
 ⋮

Stream-parse the symbols.

parsedData = wlanStreamParse(inp,numSS,numCBPS,numBPSCS)

parsedData = 52×3

 1 2 3
 4 5 6
 7 8 9
 10 11 12
 13 14 15
 16 17 18
 19 20 21
 22 23 24
 25 26 27
 28 29 30
 ⋮

Input Arguments
bits — Input sequence
matrix

Input sequence of encoded bits, specified as a (NCBPS×NSYM/NES)-by-NES matrix, where:

• NCBPS is the number of coded bits per OFDM symbol.
• NSYM is the number of OFDM symbols.
• NES is the number of encoded streams.

Data Types: double | int8

numSS — Number of spatial streams
integer from 1 to 8

Number of spatial streams (NSS), specified as an integer from 1 to 8.
Data Types: double

1 Functions — Alphabetical List

1-344

numCBPS — Number of coded bits per OFDM symbol
positive integer

Number of coded bits per OFDM symbol, specified as an integer equal to
(NBPSCS×NSS×NSD), where:

• NBPSCS is the number of coded bits per subcarrier per spatial stream. See numBPSCS.
• NSS is the number of spatial streams.
• NSD is the number of complex data numbers per frequency segment, specified as 24,

52, 108, 234, or 468.

Data Types: double

numBPSCS — Number of coded bits per subcarrier per spatial stream
1 | 2 | 4 | 6 | 8

Number of coded bits per subcarrier per spatial stream, specified as 1, 2, 4, 6, or 8.
Data Types: double

Output Arguments
y — Stream-parsed output
matrix

Stream-parsed output data, returned as an (NCBPSS×NSYM)-by-NSS matrix, where:

• NCBPSS is the number of coded bits per OFDM symbol per spatial stream.
• NSYM is the number of OFDM symbols.
• NSS is the number of spatial streams.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 wlanStreamParse

1-345

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanStreamDeparse

Introduced in R2017b

1 Functions — Alphabetical List

1-346

wlanSymbolTimingEstimate
Fine symbol timing estimate using L-LTF

Syntax
startOffset = wlanSymbolTimingEstimate(rxSig,cbw)
startOffset = wlanSymbolTimingEstimate(rxSig,cbw,threshold)
[startOffset,M] = wlanSymbolTimingEstimate(___)

Description
startOffset = wlanSymbolTimingEstimate(rxSig,cbw) returns the offset from
the start of the input waveform to the estimated start of the “L-STF” on page 1-354 21.

startOffset = wlanSymbolTimingEstimate(rxSig,cbw,threshold) specifies
the threshold that the decision metric must meet or exceed to obtain a symbol timing
estimate.

[startOffset,M] = wlanSymbolTimingEstimate(___) also returns the decision
metric of the symbol timing algorithm for the received time-domain waveform, using any
of the input arguments in the previous syntaxes.

Examples

Detect HT Packet and Estimate Symbol Timing

Detect a received 802.11n™ packet and estimate its symbol timing at 20 dB SNR.

Create an HT format configuration object and TGn channel configuration object.

cfgHT = wlanHTConfig;
tgn = wlanTGnChannel;

21. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

 wlanSymbolTimingEstimate

1-347

Generate a transmit waveform and add a delay at the start of the waveform.

txWaveform = wlanWaveformGenerator([1;0;0;1],cfgHT);
txWaveform = [zeros(100,1);txWaveform];

Pass the waveform through the TGn channel model and add noise.

SNR = 20; % In decibels
fadedSig = tgn(txWaveform);
rxWaveform = awgn(fadedSig,SNR,0);

Detect the packet. Extract the non-HT fields. Estimate the fine packet offset using the
coarse detection for the first symbol of the waveform and the non-HT preamble field
indices.

startOffset = wlanPacketDetect(rxWaveform,cfgHT.ChannelBandwidth);
ind = wlanFieldIndices(cfgHT);
nonHTFields = rxWaveform(startOffset+(ind.LSTF(1):ind.LSIG(2)),:);

startOffset = wlanSymbolTimingEstimate(nonHTFields, ...
 cfgHT.ChannelBandwidth)

startOffset = 6

Detect HT Packet and Set Threshold When Estimating Symbol Timing

Impair an HT waveform by passing it through a TGn channel configured to model a large
delay spread. Detect the waveform and estimate the symbol timing. Adjust the decision
metric threshold and estimate the symbol timing again.

Create an HT format configuration object and TGn channel configuration object. Specify
the Model-E delay profile, which introduces a large delay spread.

cfgHT = wlanHTConfig;

tgn = wlanTGnChannel;
tgn.DelayProfile = 'Model-E';

Generate a transmit waveform and add a delay at the start of the waveform.

txWaveform = wlanWaveformGenerator([1;0;0;1],cfgHT);
txWaveform = [zeros(100,1);txWaveform];

1 Functions — Alphabetical List

1-348

Pass the waveform through the TGn channel model and add noise.

SNR = 50; % In decibels
fadedSig = tgn(txWaveform);
rxWaveform = awgn(fadedSig,SNR,0);

Detect the packet. Extract the non-HT fields. Estimate the fine packet offset using the
coarse detection for the first symbol of the waveform and the non-HT preamble field
indices. Adjust the decision metric threshold and estimate the fine packet offset again.

startOffset = wlanPacketDetect(rxWaveform,cfgHT.ChannelBandwidth);
ind = wlanFieldIndices(cfgHT);
nonHTFields = rxWaveform(startOffset+(ind.LSTF(1):ind.LSIG(2)),:);

startOffset = wlanSymbolTimingEstimate(nonHTFields, ...
 cfgHT.ChannelBandwidth)

startOffset = 5

threshold = 0.1

threshold = 0.1000

startOffset = wlanSymbolTimingEstimate(nonHTFields, ...
 cfgHT.ChannelBandwidth,threshold)

startOffset = 9

Detecting the correct timing offset is more challenging for a channel model with large
delay spread. For large delay spread channels, you can try lowering the threshold setting
to see if performance improves in an end-to-end simulation.

Estimate Symbol Timing of TGn-Impaired HT Waveform

Detect a received 802.11n™ packet and estimate its symbol timing at 15 dB SNR.

Create an HT format configuration object. Specify two transmit antennas and two space-
time streams.

cfgHT = wlanHTConfig;
nAnt = 2;
cfgHT.NumTransmitAntennas = nAnt;
cfgHT.NumSpaceTimeStreams = nAnt;

 wlanSymbolTimingEstimate

1-349

Show the logic behind the MCS selection for BPSK modulation.

if cfgHT.NumSpaceTimeStreams == 1
 cfgHT.MCS = 0;
elseif cfgHT.NumSpaceTimeStreams == 2
 cfgHT.MCS = 8;
elseif cfgHT.NumSpaceTimeStreams == 3
 cfgHT.MCS = 16;
elseif cfgHT.NumSpaceTimeStreams == 4
 cfgHT.MCS = 24;
end

Generate a transmit waveform and add a delay at the start of the waveform.

txWaveform = wlanWaveformGenerator([1;0;0;1],cfgHT);
txWaveform = [zeros(100,cfgHT.NumTransmitAntennas);txWaveform];

Create a TGn channel configuration object for two transmit antennas and two receive
antennas. Specify the Model-B delay profile. Pass the waveform through the TGn channel
model and add noise.

tgn = wlanTGnChannel;
tgn.NumTransmitAntennas = nAnt;
tgn.NumReceiveAntennas = nAnt;
tgn.DelayProfile = 'Model-B';

SNR = 15; % In decibels
fadedSig = tgn(txWaveform);
rxWaveform = awgn(fadedSig,SNR,0);

Detect the packet. Extract the non-HT fields. Estimate the fine packet offset using the
coarse detection for the first symbol of the waveform and the non-HT preamble field
indices.

startOffset = wlanPacketDetect(rxWaveform,cfgHT.ChannelBandwidth);
ind = wlanFieldIndices(cfgHT);
nonHTFields = rxWaveform(startOffset+(ind.LSTF(1):ind.LSIG(2)),:);

startOffset = wlanSymbolTimingEstimate(nonHTFields, ...
 cfgHT.ChannelBandwidth)

startOffset = 8

1 Functions — Alphabetical List

1-350

Estimate VHT Packet Symbol Timing

Return the symbol timing and decision metric of an 802.11ac™ packet without channel
impairments.

Create a VHT format configuration object. Specify two transmit antennas and two space-
time streams.

cfgVHT = wlanVHTConfig;
cfgVHT.NumTransmitAntennas = 2;
cfgVHT.NumSpaceTimeStreams = 2;

Generate a VHT format transmit waveform. Add a 50-sample delay at the start of the
waveform.

txWaveform = wlanWaveformGenerator([1;0;0;1],cfgVHT);
txWaveform = [zeros(50,cfgVHT.NumTransmitAntennas); txWaveform];

Extract the non-HT preamble fields. Obtain the timing offset estimate and decision metric.

ind = wlanFieldIndices(cfgVHT);
nonhtfields = txWaveform(ind.LSTF(1):ind.LSIG(2),:);
[startOffset,M] = wlanSymbolTimingEstimate(nonhtfields, ...
 cfgVHT.ChannelBandwidth);

Plot the returned decision metric for the non-HT preamble of the VHT format
transmission waveform.

figure
plot(M)
xlabel('Symbol Timing Index')
ylabel('Decision Metric (M)')

 wlanSymbolTimingEstimate

1-351

Input Arguments
rxSig — Received signal
matrix

Received signal containing an L-LTF, specified as an NS-by-NR matrix. NS is the number of
time-domain samples in the L-LTF and NR is the number of receive antennas.
Data Types: double

cbw — Channel bandwidth
'CBW5' | 'CBW10' | 'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

1 Functions — Alphabetical List

1-352

Channel bandwidth in MHz, specified as 'CBW5', 'CBW10', 'CBW20', 'CBW40',
'CBW80', or 'CBW160'.
Data Types: char | string

threshold — Decision threshold
1 (default) | real scalar from 0 to 1

Decision threshold, specified as a real scalar from 0 to 1.

You can try out different threshold to maximize the packet reception performance. For
channels with small delay spread with respect to the cyclic prefix length, the default value
is recommended. For a wireless channel with large delay spread with respect to the cyclic
prefix length, such as TGn channel with 'Model E' delay profile, a value of 0.5 is
suggested.

By lowering the threshold setting, you add a non-negative corrector to the symbol timing
estimate as compared to the estimate using the default threshold setting. The range of
the timing corrector is [0, CSD ns/sampling duration]. For more information, see “Cyclic
Shift Delay (CSD)” on page 1-356.
Data Types: double

Output Arguments
startOffset — Offset of L-STF start
integer

Offset of L-STF start, returned as an integer within the range [–L, NS–2L], where L is the
length of the L-LTF and NS is the number of samples. Using the input channel bandwidth
(cbw) to determine the range of symbol timing, wlanSymbolTimingEstimate estimates
the offset to the start of L-STF by cross-correlating the received signal with a locally
generated “L-LTF” on page 1-355 of the first antenna.

• startOffset is empty when NS < L.
• startOffset is negative when the input waveform does not contain a complete “L-

STF” on page 1-354.

M — Cross-correlation
vector

 wlanSymbolTimingEstimate

1-353

Cross-correlation, returned as an (NS–L+1)-by-1 vector. M is the cross-correlation between
the received signal and the locally generated “L-LTF” on page 1-355 of the first transmit
antenna.

Definitions

L-STF
The legacy short training field (L-STF) is the first field of the 802.11 OFDM PLCP legacy
preamble. The L-STF is a component of VHT, HT, and non-HT PPDUs.

The L-STF duration varies with channel bandwidth.

Channel Bandwidth
(MHz)

Subcarrier
Frequency
Spacing, ΔF (kHz)

Fast Fourier
Transform (FFT)
Period
(TFFT = 1 / ΔF)

L-STF Duration
(TSHORT = 10 × TFFT /
 4)

20, 40, 80, and 160 312.5 3.2 μs 8 μs
10 156.25 6.4 μs 16 μs
5 78.125 12.8 μs 32 μs

Because the sequence has good correlation properties, it is used for start-of-packet
detection, for coarse frequency correction, and for setting the AGC. The sequence uses 12
of the 52 subcarriers that are available per 20 MHz channel bandwidth segment. For 5

1 Functions — Alphabetical List

1-354

MHz, 10 MHz, and 20 MHz bandwidths, the number of channel bandwidths segments is
1.

L-LTF
The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP legacy
preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

Channel estimation, fine frequency offset estimation, and fine symbol timing offset
estimation rely on the L-LTF.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The CP consists of the second half of the long training symbol.

The L-LTF duration varies with channel bandwidth.

 wlanSymbolTimingEstimate

1-355

Channel
Bandwidth
(MHz)

Subcarrier
Frequency
Spacing, ΔF
(kHz)

Fast Fourier
Transform
(FFT) Period
(TFFT = 1 / ΔF)

Cyclic Prefix or
Training
Symbol Guard
Interval (GI2)
Duration
(TGI2 = TFFT / 2)

L-LTF Duration
(TLONG = TGI2 +
2 × TFFT)

20, 40, 80, and
160

312.5 3.2 μs 1.6 μs 8 μs

10 156.25 6.4 μs 3.2 μs 16 μs
5 78.125 12.8 μs 6.4 μs 32 μs

Cyclic Shift Delay (CSD)
A CSD is added to the L-LTF for each transmit antenna, which causes multiple strong
peaks in the correlation function M. The multiple peaks affect the accuracy of fine symbol
timing estimation. For more information, see IEEE 802.11ac, Section 22.3.8.2.1 and Table
22-10.

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

[2] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

1 Functions — Alphabetical List

1-356

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
comm.PhaseFrequencyOffset | wlanCoarseCFOEstimate | wlanLLTF

Introduced in R2017a

 wlanSymbolTimingEstimate

1-357

wlanVHTConfig
Create VHT format configuration object

Syntax
cfgVHT = wlanVHTConfig
cfgVHT = wlanVHTConfig(Name,Value)

Description
cfgVHT = wlanVHTConfig creates a configuration object that initializes parameters for
an IEEE 802.11 very high throughput (VHT) format “PPDU” on page 1-366.

cfgVHT = wlanVHTConfig(Name,Value) creates a VHT format configuration object
that overrides the default settings using one or more Name,Value pair arguments.

At runtime, the calling function validates object settings for properties relevant to the
operation of the function.

Examples

Create wlanVHTConfig Object for Single User

Create a VHT configuration object with the default settings.

cfgVHT = wlanVHTConfig

cfgVHT =
 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW80'
 NumUsers: 1
 NumTransmitAntennas: 1
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'

1 Functions — Alphabetical List

1-358

 STBC: 0
 MCS: 0
 ChannelCoding: 'BCC'
 APEPLength: 1024
 GuardInterval: 'Long'
 GroupID: 63
 PartialAID: 275

 Read-only properties:
 PSDULength: 1035

Update the channel bandwidth.

cfgVHT.ChannelBandwidth = 'CBW40'

cfgVHT =
 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW40'
 NumUsers: 1
 NumTransmitAntennas: 1
 NumSpaceTimeStreams: 1
 SpatialMapping: 'Direct'
 STBC: 0
 MCS: 0
 ChannelCoding: 'BCC'
 APEPLength: 1024
 GuardInterval: 'Long'
 GroupID: 63
 PartialAID: 275

 Read-only properties:
 PSDULength: 1030

Create wlanVHTConfig Object for Two Users

Create a VHT configuration object for a 20MHz two-user configuration and one antenna
per user.

 wlanVHTConfig

1-359

Create a wlanVHTConfig object using a combination of Name,Value pairs and in-line
initialization to change default settings. Vector-valued properties apply user-specific
settings.

cfgMU = wlanVHTConfig('ChannelBandwidth','CBW20','NumUsers',2, ...
 'GroupID',2,'NumTransmitAntennas',2);

cfgMU.NumSpaceTimeStreams = [1 1];
cfgMU.MCS = [4 8];
cfgMU.APEPLength = [1024 2048];
cfgMU.ChannelCoding = {'BCC' 'LDPC'}

cfgMU =
 wlanVHTConfig with properties:

 ChannelBandwidth: 'CBW20'
 NumUsers: 2
 UserPositions: [0 1]
 NumTransmitAntennas: 2
 NumSpaceTimeStreams: [1 1]
 SpatialMapping: 'Direct'
 MCS: [4 8]
 ChannelCoding: {'BCC' 'LDPC'}
 APEPLength: [1024 2048]
 GuardInterval: 'Long'
 GroupID: 2

 Read-only properties:
 PSDULength: [1030 2065]

The configuration object settings reflect the updates specified. Default values are used for
properties that were not modified.

Input Arguments

Name-Value Pair Arguments
Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single

1 Functions — Alphabetical List

1-360

quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'ChannelBandwidth','CBW160','NumUsers',2 specifies a channel
bandwidth of 160 MHz and two users for the VHT format packet.

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.
Data Types: char | string

NumUsers — Number of users
1 (default) | 2 | 3 | 4

Number of users, specified as 1, 2, 3, or 4. (NUsers)
Data Types: double

UserPositions — Position of users
[0 1] (default) | row vector of integers from 0 to 3 in strictly increasing order

Position of users, specified as an integer row vector with length equal to NumUsers and
element values from 0 to 3 in a strictly increasing order. This property applies when
NumUsers > 1.
Example: [0 2 3] indicates positions for three users, where the first user occupies
position 0, the second user occupies position 2, and the third user occupies position 3.
Data Types: double

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas, specified as a scalar integer from 1 to 8.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

 wlanVHTConfig

1-361

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of integers

from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] is the number of space-time streams for each user.

Note The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.
Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
apply a beamforming steering matrix, and to rotate and scale the constellation mapper
output vector. If applicable, scale the space-time block coder output instead.
SpatialMappingMatrix applies when the SpatialMapping property is set to
'Custom'. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

• When specified as a scalar, a constant value applies to all the subcarriers.
• When specified as a matrix, the size must be NSTS_Total-by-NT. The spatial mapping

matrix applies to all the subcarriers. NSTS_Total is the sum of space-time streams for all
users, and NT is the number of transmit antennas.

• When specified as a 3-D array, the size must be NST-by-NSTS_Total-by-NT. NST is the sum
of the occupied data (NSD) and pilot (NSP) subcarriers, as determined by
ChannelBandwidth. NSTS_Total is the sum of space-time streams for all users. NT is the
number of transmit antennas.

NST increases with channel bandwidth.

1 Functions — Alphabetical List

1-362

ChannelBandwidt
h

Number of
Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW20' 56 52 4
'CBW40' 114 108 6
'CBW80' 242 234 8
'CBW160' 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.
Data Types: double
Complex Number Support: Yes

Beamforming — Enable signaling of a transmission with beamforming
true (default) | false

Enable signaling of a transmission with beamforming, specified as a logical. Beamforming
is performed when setting is true. This property applies when NumUsers equals 1 and
SpatialMapping is set to 'Custom'. The SpatialMappingMatrix property specifies
the beamforming steering matrix.
Data Types: logical

STBC — Enable space-time block coding
false (default) | true

Enable space-time block coding (STBC) of the PPDU data field, specified as a logical.
STBC transmits multiple copies of the data stream across assigned antennas.

• When set to false, no STBC is applied to the data field, and the number of space-time
streams is equal to the number of spatial streams.

• When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

See IEEE 802.11ac-2013, Section 22.3.10.9.4 for further description.

Note STBC is relevant for single-user transmissions only.

 wlanVHTConfig

1-363

Data Types: logical

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 9 | 1-by-NUsers vector of integers

Modulation and coding scheme used in transmitting the current packet, specified as a
scalar or vector.

• For a single user, the MCS value is a scalar integer from 0 to 9.
• For multiple users, MCS is a 1-by-NUsers vector of integers or a scalar with values from

0 to 9, where the vector length, NUsers, is an integer from 1 to 4.

MCS Modulation Coding Rate
0 BPSK 1/2
1 QPSK 1/2
2 QPSK 3/4
3 16QAM 1/2
4 16QAM 3/4
5 64QAM 2/3
6 64QAM 3/4
7 64QAM 5/6
8 256QAM 3/4
9 256QAM 5/6

Data Types: double

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default) or
'LDPC'. 'BCC' indicates binary convolutional coding and 'LDPC' indicates low density
parity check coding. Providing a character vector or a single cell character vector defines
the channel coding type for a single user or all users in a multiuser transmission. By
providing a cell array different channel coding types can be specified per user for a
multiuser transmission.
Data Types: char | cell | string

1 Functions — Alphabetical List

1-364

APEPLength — Number of bytes in the A-MPDU pre-EOF padding
1024 (default) | integer from 0 to 1,048,575 | vector of integers

Number of bytes in the A-MPDU pre-EOF padding, specified as a scalar integer or vector
of integers.

• For a single user, APEPLength is a scalar integer from 0 to 1,048,575.
• For multi-user, APEPLength is a 1-by-NUsers vector of integers or a scalar with values

from 0 to 1,048,575, where the vector length, NUsers, is an integer from 1 to 4.
• APEPLength = 0 for a null data packet (NDP).

APEPLength is used internally to determine the number of OFDM symbols in the data
field. For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char | string

GroupID — Group identification number
63 (default) | integer from 0 to 63

Group identification number, specified as a scalar integer from 0 to 63.

• A group identification number of either 0 or 63 indicates a VHT single-user PPDU.
• A group identification number from 1 to 62 indicates a VHT multi-user PPDU.

Data Types: double

PartialAID — Abbreviated indication of the PSDU recipient
275 (default) | integer from 0 to 511

Abbreviated indication of the PSDU recipient, specified as a scalar integer from 0 to 511.

• For an uplink transmission, the partial identification number is the last nine bits of the
basic service set identifier (BSSID).

 wlanVHTConfig

1-365

• For a downlink transmission, the partial identification of a client is an identifier that
combines the association ID with the BSSID of its serving AP.

For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

Output Arguments
cfgVHT — VHT PPDU configuration
wlanVHTConfig object

VHT “PPDU” on page 1-366 configuration, returned as a wlanVHTConfig object. The
properties of cfgVHT are described in wlanVHTConfig.

Definitions

PPDU
The physical layer convergence procedure (PLCP) protocol data unit (PPDU) is the
complete PLCP frame, including PLCP headers, MAC headers, the MAC data field, and
the MAC and PLCP trailers.

References
[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

1 Functions — Alphabetical List

1-366

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanDMGConfig | wlanHTConfig | wlanNonHTConfig | wlanS1GConfig |
wlanVHTDataRecover | wlanVHTLTFDemodulate | wlanWaveformGenerator

Topics
“Packet Size and Duration Dependencies”

Introduced in R2015b

 wlanVHTConfig

1-367

wlanVHTData
Generate VHT-Data field

Syntax
y = wlanVHTData(psdu,cfg)
y = wlanVHTData(psdu,cfg,scramInit)

Description
y = wlanVHTData(psdu,cfg) generates a “VHT-Data field” on page 1-37622 time-
domain waveform from the input user data bits, psdu, for the specified configuration
object, cfg. See “VHT-Data Field Processing” on page 1-378 for waveform generation
details.

y = wlanVHTData(psdu,cfg,scramInit) uses scramInit for the scrambler
initialization state.

Examples

Generate VHT-Data Waveform

Generate the waveform for a MIMO 20 MHz VHT-Data field.

Create a VHT configuration object. Assign a 20 MHz channel bandwidth, two transmit
antennas, two space-time streams, and set MCS to four.

cfgVHT = wlanVHTConfig('ChannelBandwidth','CBW20','NumTransmitAntennas',2,'NumSpaceTimeStreams',2,'MCS',4);

Generate the user payload data and the VHT-Data field waveform.

22. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

1 Functions — Alphabetical List

1-368

psdu = randi([0 1],cfgVHT.PSDULength*8,1);
y = wlanVHTData(psdu,cfgVHT);
size(y)

ans = 1×2

 2160 2

The 20 MHz waveform is an array with two columns, corresponding to two transmit
antennas. There are 2160 complex samples in each column.

y(1:10,:)

ans = 10×2 complex

 -0.0598 + 0.1098i -0.1904 + 0.1409i
 0.6971 - 0.3068i -0.0858 - 0.2701i
 -0.1284 + 0.9268i -0.8318 + 0.3314i
 -0.1180 + 0.0731i 0.1313 + 0.4956i
 0.3591 + 0.5485i 0.9749 + 0.2859i
 -0.9751 + 1.3334i 0.0559 + 0.4248i
 0.0881 - 0.8230i -0.1878 - 0.2959i
 -0.2952 - 0.4433i -0.1005 - 0.4035i
 -0.5562 - 0.3940i -0.1292 - 0.5976i
 1.0999 + 0.3292i -0.2036 - 0.0200i

Input Arguments
psdu — PHY service data unit
vector

PHY service data unit (“PSDU” on page 1-377), specified as an Nb-by-1 vector. Nb is the
number of bits and equals PSDULength × 8.
Data Types: double

cfg — Format configuration
wlanVHTConfig object

Format configuration, specified as a wlanVHTConfig object. The wlanVHTData function
uses the object properties indicated.

 wlanVHTData

1-369

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.
Data Types: char | string

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas, specified as a scalar integer from 1 to 8.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of integers

from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] is the number of space-time streams for each user.

Note The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.
Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

1 Functions — Alphabetical List

1-370

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
apply a beamforming steering matrix, and to rotate and scale the constellation mapper
output vector. If applicable, scale the space-time block coder output instead.
SpatialMappingMatrix applies when the SpatialMapping property is set to
'Custom'. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

• When specified as a scalar, a constant value applies to all the subcarriers.
• When specified as a matrix, the size must be NSTS_Total-by-NT. The spatial mapping

matrix applies to all the subcarriers. NSTS_Total is the sum of space-time streams for all
users, and NT is the number of transmit antennas.

• When specified as a 3-D array, the size must be NST-by-NSTS_Total-by-NT. NST is the sum
of the occupied data (NSD) and pilot (NSP) subcarriers, as determined by
ChannelBandwidth. NSTS_Total is the sum of space-time streams for all users. NT is the
number of transmit antennas.

NST increases with channel bandwidth.

ChannelBandwidt
h

Number of
Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW20' 56 52 4
'CBW40' 114 108 6
'CBW80' 242 234 8
'CBW160' 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.
Data Types: double
Complex Number Support: Yes

STBC — Enable space-time block coding
false (default) | true

Enable space-time block coding (STBC) of the PPDU data field, specified as a logical.
STBC transmits multiple copies of the data stream across assigned antennas.

• When set to false, no STBC is applied to the data field, and the number of space-time
streams is equal to the number of spatial streams.

 wlanVHTData

1-371

• When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

See IEEE 802.11ac-2013, Section 22.3.10.9.4 for further description.

Note STBC is relevant for single-user transmissions only.

Data Types: logical

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 9 | 1-by-NUsers vector of integers

Modulation and coding scheme used in transmitting the current packet, specified as a
scalar or vector.

• For a single user, the MCS value is a scalar integer from 0 to 9.
• For multiple users, MCS is a 1-by-NUsers vector of integers or a scalar with values from

0 to 9, where the vector length, NUsers, is an integer from 1 to 4.

MCS Modulation Coding Rate
0 BPSK 1/2
1 QPSK 1/2
2 QPSK 3/4
3 16QAM 1/2
4 16QAM 3/4
5 64QAM 2/3
6 64QAM 3/4
7 64QAM 5/6
8 256QAM 3/4
9 256QAM 5/6

Data Types: double

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

1 Functions — Alphabetical List

1-372

Type of forward error correction coding for the data field, specified as 'BCC' (default) or
'LDPC'. 'BCC' indicates binary convolutional coding and 'LDPC' indicates low density
parity check coding. Providing a character vector or a single cell character vector defines
the channel coding type for a single user or all users in a multiuser transmission. By
providing a cell array different channel coding types can be specified per user for a
multiuser transmission.
Data Types: char | cell | string

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char | string

APEPLength — Number of bytes in the A-MPDU pre-EOF padding
1024 (default) | integer from 0 to 1,048,575 | vector of integers

Number of bytes in the A-MPDU pre-EOF padding, specified as a scalar integer or vector
of integers.

• For a single user, APEPLength is a scalar integer from 0 to 1,048,575.
• For multi-user, APEPLength is a 1-by-NUsers vector of integers or a scalar with values

from 0 to 1,048,575, where the vector length, NUsers, is an integer from 1 to 4.
• APEPLength = 0 for a null data packet (NDP).

APEPLength is used internally to determine the number of OFDM symbols in the data
field. For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

PSDULength — Number of bytes carried in the user payload
integer | vector of integers

This property is read-only.

Number of bytes carried in the user payload, including the A-MPDU and any MAC
padding. For a null data packet (NDP) the PSDU length is zero.

 wlanVHTData

1-373

• For a single user, the PSDU length is a scalar integer from 1 to 1,048,575.
• For multiple users, the PSDU length is a 1-by-NUsers vector of integers from 1 to

1,048,575, where the vector length, NUsers, is an integer from 1 to 4.
• When undefined, PSDULength is returned as an empty of size 1×0. This can happen

when the set of property values for the object are in an invalid state.

PSDULength is a read-only property and is calculated internally based on the
APEPLength property and other coding-related properties, as specified in IEEE Std
802.11ac-2013, Section 22.4.3. It is accessible by direct property call.

Example: [1035 4150] is the PSDU length vector for a wlanVHTConfig object with two
users, where the MCS for the first user is 0 and the MCS for the second user is 3.
Data Types: double

scramInit — Scrambler initialization state
93 (default) | integer from 1 to 127 | integer row vector | binary vector | binary matrix

Initial scrambler state of the data scrambler for each packet generated, specified as an
integer, a binary vector, a 1-by-NU integer row vector, or a 7-by-NU binary matrix. NU is the
number of users, from 1 to 4. If specified as an integer or binary vector, the setting
applies to all users. If specified as a row vector or binary matrix, the setting for each user
is specified in the corresponding column, as a scalar integer from 1 to 127 or the
corresponding binary vector.

The scrambler initialization used on the transmission data follows the process described
in IEEE Std 802.11-2012, Section 18.3.5.5 and IEEE Std 802.11ad-2012, Section 21.3.9.
The header and data fields that follow the scrambler initialization field (including data
padding bits) are scrambled by XORing each bit with a length-127 periodic sequence
generated by the polynomial S(x) = x7+x4+1. The octets of the PSDU (Physical Layer
Service Data Unit) are placed into a bit stream, and within each octet, bit 0 (LSB) is first
and bit 7 (MSB) is last. The generation of the sequence and the XOR operation are shown
in this figure:

1 Functions — Alphabetical List

1-374

Conversion from integer to bits uses left-MSB orientation. For the initialization of the
scrambler with decimal 1, the bits are mapped to the elements shown.

Element X7 X6 X5 X4 X3 X2 X1

Bit Value 0 0 0 0 0 0 1

To generate the bit stream equivalent to a decimal, use de2bi. For example, for decimal
1:

de2bi(1,7,'left-msb')
ans =

 0 0 0 0 0 0 1

Example: [1;0;1;1;1;0;1] conveys the scrambler initialization state of 93 as a binary
vector.
Data Types: double | int8

 wlanVHTData

1-375

Output Arguments
y — VHT-Data field time-domain waveform
matrix

“VHT-Data field” on page 1-376 time-domain waveform, returned as an NS-by-NT matrix.
NS is the number of time-domain samples and NT is the number of transmit antennas. See
“VHT-Data Field Processing” on page 1-378 for waveform generation details.

Definitions

VHT-Data field
The very high throughput data (VHT data) field is used to transmit one or more frames
from the MAC layer. It follows the VHT-SIG-B field in the packet structure for the VHT
format PPDUs.

The VHT data field is defined in IEEE Std 802.11ac-2013, Section 22.3.10. It is composed
of four subfields.

1 Functions — Alphabetical List

1-376

• Service field — Contains a seven-bit scrambler initialization state, one bit reserved
for future considerations, and eight bits for the VHT-SIG-B CRC field.

• PSDU — Variable-length field containing the PLCP service data unit. In 802.11, the
PSDU can consist of an aggregate of several MAC service data units.

• PHY Pad — Variable number of bits passed to the transmitter to create a complete
OFDM symbol.

• Tail — Bits used to terminate a convolutional code. Tail bits are not needed when
LDPC is used.

PSDU
Physical layer (PHY) Service Data Unit (PSDU). A PSDU can consist of one medium access
control (MAC) protocol data unit (MPDU) or several MPDUs in an aggregate MPDU (A-
MPDU). In a single user scenario, the VHT-Data field contains one PSDU. In a multi-user
scenario, the VHT-Data field carries up to four PSDUs for up to four users.

 wlanVHTData

1-377

Algorithms

VHT-Data Field Processing
The “VHT-Data field” on page 1-376 encodes the service, “PSDU” on page 1-377, pad bits,
and tail bits. The wlanVHTData function performs transmitter processing on the “VHT-
Data field” on page 1-376 and outputs the time-domain waveform for NT transmit
antennas.

1 Functions — Alphabetical List

1-378

NES is the number of BCC encoders.
NSS is the number of spatial streams.

 wlanVHTData

1-379

NSTS is the number of space-time streams.
NT is the number of transmit antennas.

BCC channel coding is shown.

For algorithm details, refer to IEEE Std 802.11ac-2013 [1], Section 22.3.4.9 and
22.3.4.10, respectively, single user and multi-user.

References
[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanHTConfig | wlanVHTDataRecover | wlanWaveformGenerator

Introduced in R2015b

1 Functions — Alphabetical List

1-380

wlanVHTDataRecover
Recover VHT data

Syntax
recBits = wlanVHTDataRecover(rxSig,chEst,noiseVarEst,cfg)
recBits = wlanVHTDataRecover(rxSig,chEst,noiseVarEst,cfg,userNumber)
recBits = wlanVHTDataRecover(rxSig,chEst,noiseVarEst,cfg,userNumber,
numSTS)
recBits = wlanVHTDataRecover(___ ,cfgRec)

[recBits,crcBits] = wlanVHTDataRecover(___)
[recBits,crcBits,eqSym] = wlanVHTDataRecover(___)
[recBits,crcBits,eqSym,cpe] = wlanVHTDataRecover(___)

Description
recBits = wlanVHTDataRecover(rxSig,chEst,noiseVarEst,cfg) returns the
recovered payload bits from the “VHT data field” on page 1-39323 for a single-user
transmission. Inputs include the received “VHT data field” on page 1-393 signal, the
channel estimate, the noise variance estimate, and the format configuration object, cfg.

recBits = wlanVHTDataRecover(rxSig,chEst,noiseVarEst,cfg,userNumber)
returns the recovered payload bits, in a multiuser transmission, for the user specified by
userNumber.

recBits = wlanVHTDataRecover(rxSig,chEst,noiseVarEst,cfg,userNumber,
numSTS) also specifies the number of space-time streams, numSTS, for a multiuser
transmission.

recBits = wlanVHTDataRecover(___ ,cfgRec) returns the recovered bits using the
algorithm parameters specified in cfgRec.

23. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

 wlanVHTDataRecover

1-381

[recBits,crcBits] = wlanVHTDataRecover(___) also returns the VHT-SIG-B
checksum bits, crcBits, using the arguments from the previous syntaxes.

[recBits,crcBits,eqSym] = wlanVHTDataRecover(___) also returns the
equalized symbols, eqSym.

[recBits,crcBits,eqSym,cpe] = wlanVHTDataRecover(___) also returns the
common phase error, cpe.

Examples

Recover VHT-Data Field Over 2x2 Fading Channel

Recover bits in the VHT-Data field using channel estimation on a VHT-LTF field over a 2 x
2 quasi-static fading channel.

Create a VHT configuration object with 160 MHz channel bandwidth and two
transmission paths.

cbw = 'CBW160';
vht = wlanVHTConfig('ChannelBandwidth',cbw,'NumTransmitAntennas',2,'NumSpaceTimeStreams',2,'APEPLength',512);

Generate VHT-LTF and VHT-Data field signals.

txDataBits = randi([0 1],8*vht.PSDULength,1);
txVHTLTF = wlanVHTLTF(vht);
txVHTData = wlanVHTData(txDataBits,vht);

Pass the transmitted waveform through a 2 x 2 quasi-static fading channel with AWGN.

snr = 10;
H = 1/sqrt(2)*complex(randn(2,2),randn(2,2));
rxVHTLTF = awgn(txVHTLTF*H,snr);
rxVHTData = awgn(txVHTData*H,snr);

Calculate the received signal power and use it to estimate the noise variance.

powerDB = 10*log10(var(rxVHTData));
noiseVarEst = mean(10.^(0.1*(powerDB-snr)));

Perform channel estimation based on the VHT-LTF field.

1 Functions — Alphabetical List

1-382

demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,vht,1);
chanEst = wlanVHTLTFChannelEstimate(demodVHTLTF,vht);

Recover payload bits in the VHT-Data field and compare against the original payload bits.

rxDataBits = wlanVHTDataRecover(rxVHTData,chanEst,noiseVarEst,vht);
numErr = biterr(txDataBits,rxDataBits)

numErr = 0

Recover VHT-Data Field Signal

Recover a VHT-Data field signal through a SISO AWGN channel using ZF equalization.

Configure VHT format object, generate random payload bits, and generate the VHT-Data
field.

cfgVHT = wlanVHTConfig('APEPLength',512);
txBits = randi([0 1], 8*cfgVHT.PSDULength,1);
txVHTData = wlanVHTData(txBits,cfgVHT);

Pass the transmitted VHT data through an AWGN channel.

awgnChan = comm.AWGNChannel('NoiseMethod','Variance','Variance',0.1);
rxVHTData = awgnChan(txVHTData);

Configure the recovery object and recover the payload bits using a perfect channel
estimate of all ones. Compare the recovered bits against the transmitted bits.

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF');
recBits = wlanVHTDataRecover(rxVHTData,ones(242,1),0.1,cfgVHT,cfgRec);
numErrs = biterr(txBits,recBits)

numErrs = 0

Recover VHT-Data Field in MU-MIMO Channel

Recover VHT-Data field bits for a multiuser transmission using channel estimation on a
VHT-LTF field over a quasi-static fading channel.

 wlanVHTDataRecover

1-383

Create a VHT configuration object having a 160 MHz channel bandwidth, two users, and
four transmit antennas. Assign one space-time stream to the first user and three space-
time streams to the second user.

cbw = 'CBW160';
numSTS = [1 3];
vht = wlanVHTConfig('ChannelBandwidth',cbw,'NumUsers',2, ...
 'NumTransmitAntennas',4,'NumSpaceTimeStreams',numSTS);

Because there are two users, the PSDU length is a 1-by-2 row vector.

psduLen = vht.PSDULength

psduLen = 1×2

 1050 3156

Generate multiuser input data. This data must be in the form of a 1-by- N cell array,
where N is the number of users.

txDataBits{1} = randi([0 1],8*vht.PSDULength(1),1);
txDataBits{2} = randi([0 1],8*vht.PSDULength(2),1);

Generate VHT-LTF and VHT-Data field signals.

txVHTLTF = wlanVHTLTF(vht);
txVHTData = wlanVHTData(txDataBits,vht);

Pass the data field for the first user through a 4x1 channel because it consists of a single
space-time stream. Pass the second user's data through a 4x3 channel because it consists
of three space-time streams. Apply white Gaussian noise to each user signal.

snr = 15;
H1 = 1/sqrt(2)*complex(randn(4,1),randn(4,1));
H2 = 1/sqrt(2)*complex(randn(4,3),randn(4,3));

rxVHTData1 = awgn(txVHTData*H1,snr,'measured');
rxVHTData2 = awgn(txVHTData*H2,snr,'measured');

Repeat the process for the VHT-LTF fields.

rxVHTLTF1 = awgn(txVHTLTF*H1,snr,'measured');
rxVHTLTF2 = awgn(txVHTLTF*H2,snr,'measured');

1 Functions — Alphabetical List

1-384

Calculate the received signal power for both users and use it to estimate the noise
variance.

powerDB1 = 10*log10(var(rxVHTData1));
noiseVarEst1 = mean(10.^(0.1*(powerDB1-snr)));

powerDB2 = 10*log10(var(rxVHTData2));
noiseVarEst2 = mean(10.^(0.1*(powerDB2-snr)));

Estimate the channel characteristics using the VHT-LTF fields.

demodVHTLTF1 = wlanVHTLTFDemodulate(rxVHTLTF1,cbw,numSTS);
chanEst1 = wlanVHTLTFChannelEstimate(demodVHTLTF1,cbw,numSTS);

demodVHTLTF2 = wlanVHTLTFDemodulate(rxVHTLTF2,cbw,numSTS);
chanEst2 = wlanVHTLTFChannelEstimate(demodVHTLTF2,cbw,numSTS);

Recover VHT-Data field bits for the first user and compare against the original payload
bits.

rxDataBits1 = wlanVHTDataRecover(rxVHTData1,chanEst1,noiseVarEst1,vht,1);
[~,ber1] = biterr(txDataBits{1},rxDataBits1)

ber1 = 0.4983

Determine the number of bit errors for the second user.

rxDataBits2 = wlanVHTDataRecover(rxVHTData2,chanEst2,noiseVarEst2,vht,2);
[~,ber2] = biterr(txDataBits{2},rxDataBits2)

ber2 = 0.0972

The bit error rates are quite high because there is no precoding to mitigate the
interference between streams. This is especially evident for the user 1 receiver because it
receives energy from the three streams intended for user 2. The example is intended to
show the workflow and proper syntaxes for the LTF demodulate, channel estimation, and
data recovery functions.

Input Arguments
rxSig — Received VHT-Data field signal
matrix

 wlanVHTDataRecover

1-385

Received VHT-Data field signal in the time domain, specified as an NS-by-NR matrix. NR is
the number of receive antennas. NS must be greater than or equal to the number of time-
domain samples in the VHT-Data field input.

Note wlanVHTDataRecover processes one PPDU data field per entry. If NS is greater
than the field length, extra samples at the end of rxSig are not processed. To process a
concatenated stream of PPDU data fields, multiple calls to wlanVHTDataRecover are
required. If rxSig is shorter than the length of the VHT-Data field, an error occurs.

Data Types: double
Complex Number Support: Yes

chEst — Channel estimation
matrix | 3-D array

Channel estimation for data and pilot subcarriers, specified as a matrix or array of size
NST-by-NSTS-by-NR. NST is the number of occupied subcarriers. NSTS is the number of
space-time streams. For multiuser transmissions, NSTS is the total number of space-time
streams for all users. NR is the number of receive antennas. NST and NSTS must match the
cfg configuration object settings for channel bandwidth and number of space-time
streams.

NST increases with channel bandwidth.

ChannelBandwidth Number of
Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW20' 56 52 4
'CBW40' 114 108 6
'CBW80' 242 234 8
'CBW160' 484 468 16

Data Types: double
Complex Number Support: Yes

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.

1 Functions — Alphabetical List

1-386

Data Types: double

cfg — VHT PPDU configuration
wlanVHTConfig object

VHT PPDU configuration, specified as a wlanVHTConfig object. The
wlanVHTDataRecover function uses the following wlanVHTConfig object properties:

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.
Data Types: char | string

NumUsers — Number of users
1 (default) | 2 | 3 | 4

Number of users, specified as 1, 2, 3, or 4. (NUsers)
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of integers

from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] is the number of space-time streams for each user.

Note The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

STBC — Enable space-time block coding
false (default) | true

 wlanVHTDataRecover

1-387

Enable space-time block coding (STBC) of the PPDU data field, specified as a logical.
STBC transmits multiple copies of the data stream across assigned antennas.

• When set to false, no STBC is applied to the data field, and the number of space-time
streams is equal to the number of spatial streams.

• When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

See IEEE 802.11ac-2013, Section 22.3.10.9.4 for further description.

Note STBC is relevant for single-user transmissions only.

Data Types: logical

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char | string

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 9 | 1-by-NUsers vector of integers

Modulation and coding scheme used in transmitting the current packet, specified as a
scalar or vector.

• For a single user, the MCS value is a scalar integer from 0 to 9.
• For multiple users, MCS is a 1-by-NUsers vector of integers or a scalar with values from

0 to 9, where the vector length, NUsers, is an integer from 1 to 4.

MCS Modulation Coding Rate
0 BPSK 1/2
1 QPSK 1/2
2 QPSK 3/4

1 Functions — Alphabetical List

1-388

MCS Modulation Coding Rate
3 16QAM 1/2
4 16QAM 3/4
5 64QAM 2/3
6 64QAM 3/4
7 64QAM 5/6
8 256QAM 3/4
9 256QAM 5/6

Data Types: double

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default) or
'LDPC'. 'BCC' indicates binary convolutional coding and 'LDPC' indicates low density
parity check coding. Providing a character vector or a single cell character vector defines
the channel coding type for a single user or all users in a multiuser transmission. By
providing a cell array different channel coding types can be specified per user for a
multiuser transmission.
Data Types: char | cell | string

APEPLength — Number of bytes in the A-MPDU pre-EOF padding
1024 (default) | integer from 0 to 1,048,575 | vector of integers

Number of bytes in the A-MPDU pre-EOF padding, specified as a scalar integer or vector
of integers.

• For a single user, APEPLength is a scalar integer from 0 to 1,048,575.
• For multi-user, APEPLength is a 1-by-NUsers vector of integers or a scalar with values

from 0 to 1,048,575, where the vector length, NUsers, is an integer from 1 to 4.
• APEPLength = 0 for a null data packet (NDP).

APEPLength is used internally to determine the number of OFDM symbols in the data
field. For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

 wlanVHTDataRecover

1-389

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters containing properties used during data recovery, specified as a
wlanRecoveryConfig object. The configurable properties include OFDM symbol
sampling offset, equalization method, and the type of pilot phase tracking. If you do not
specify a cfgRec object, the default object property values as described in
wlanRecoveryConfig are used in the data recovery.

Note Use cfgRec.EqualizationMethod = 'ZF' when either of the following
conditions are met:

• cfg.NumSpaceTimeStreams=1
• cfg.NumSpaceTimeStreams=2 and cfg.STBC=true

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

1 Functions — Alphabetical List

1-390

Data Types: double

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

Equalization method, specified as 'MMSE' or 'ZF'.

• 'MMSE' indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF' indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'
Data Types: char | string

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char | string

MaximumLDPCIterationCount — Maximum number of decoding iterations in
LDPC
12 (default) | positive scalar integer

Maximum number of decoding iterations in LDPC, specified as a positive scalar integer.
This parameter is applicable when channel coding is set to LDPC. For information on
channel coding options, see wlanVHTConfig or wlanHTConfig for 802.11 format of
interest.
Data Types: double

EarlyTermination — Enable early termination of LDPC decoding
false (default) | true

Enable early termination of LDPC decoding, specified as a logical. This parameter is
applicable when channel coding is set to LDPC.

• When set to false, LDPC decoding completes the number of iterations specified by
MaximumLDPCIterationCount, regardless of parity check status.

 wlanVHTDataRecover

1-391

• When set to true, LDPC decoding terminates when all parity-checks are satisfied.

For information on channel coding options, see wlanVHTConfig or wlanHTConfig for
802.11 format of interest.

userNumber — Number of the user
integer from 1 to NUsers

Number of the user in a multiuser transmission, specified as an integer having a value
from 1 to NUsers. NUsers is the total number of users.

numSTS — Number of space-time streams
1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in a multiuser transmission, specified as a vector. The
number of space-time streams is a 1-by-NUsers vector of integers from 1 to 4, where NUsers
is an integer from 1 to 4.
Example: [1 3 2] is the number of space-time streams for each user.

Note The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

Output Arguments
recBits — Recovered payload bits in the VHT-Data field
1 | 0 | column vector

Recovered payload bits in the VHT-Data field, returned as a column vector of length
8 × cfgVHT.PSDULength. See wlanVHTConfig for PSDULength details. The output is for
a single user as determined by userNumber.
Data Types: int8

crcBits — Checksum bits for VHT-SIG-B field
binary column vector

Checksum bits for VHT-SIG-B field, returned as a binary column vector of length 8.
Data Types: int8

1 Functions — Alphabetical List

1-392

eqSym — Equalized symbols
matrix | 3-D array

Equalized symbols, returned as an NSD-by-NSYM-by-NSS matrix or array. NSD is the number
of data subcarriers. NSYM is the number of OFDM symbols in the VHT-Data field. NSS is the
number of spatial streams assigned to the user. When STBC is false, NSS = NSTS. When
STBC is true, NSS = NSTS/2.
Data Types: double
Complex Number Support: Yes

cpe — Common phase error
column vector

Common phase error in radians, returned as a column vector having length NSYM. NSYM is
the number of OFDM symbols in the “VHT data field” on page 1-393.

Limitations
wlanVHTDataRecover processing limitations, restrictions, and recommendations:

• If only VHT format PPDUs are processed, then isa(cfgVHT, 'wlanVHTConfig')
must be true.

• For single-user scenarios, cfgVHT.NumUsers must equal 1.
• When STBC is enabled, the number of space-time streams must be even.
• cfgRec.EqualizationMethod = 'ZF' is recommended when cfgVHT.STBC =

true and cfgVHT.NumSpaceTimeStreams = 2
• cfgRec.EqualizationMethod = 'ZF' is recommended when

cfgVHT.NumSpaceTimeStreams = 1

Definitions

VHT data field
The very high throughput data (VHT data) field is used to transmit one or more frames
from the MAC layer. It follows the VHT-SIG-B field in the packet structure for the VHT
format PPDUs.

 wlanVHTDataRecover

1-393

The VHT data field is defined in IEEE Std 802.11ac-2013, Section 22.3.10. It is composed
of four subfields.

• Service field — Contains a seven-bit scrambler initialization state, one bit reserved
for future considerations, and eight bits for the VHT-SIG-B CRC field.

• PSDU — Variable-length field containing the PLCP service data unit. In 802.11, the
PSDU can consist of an aggregate of several MAC service data units.

• PHY Pad — Variable number of bits passed to the transmitter to create a complete
OFDM symbol.

1 Functions — Alphabetical List

1-394

• Tail — Bits used to terminate a convolutional code. Tail bits are not needed when
LDPC is used.

References
[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanRecoveryConfig | wlanVHTConfig | wlanVHTData |
wlanVHTLTFChannelEstimate | wlanVHTLTFDemodulate

Introduced in R2015b

 wlanVHTDataRecover

1-395

wlanVHTLTF
Generate VHT-LTF waveform

Syntax
y = wlanVHTLTF(cfg)

Description
y = wlanVHTLTF(cfg) generates a “VHT-LTF” on page 1-399 24 time-domain waveform
for the specified configuration object. See “VHT-LTF Processing” on page 1-400 for
waveform generation details.

Examples

Generate VHT-LTF Waveform

Create a VHT configuration object with an 80 MHz channel bandwidth.

cfgVHT = wlanVHTConfig;
cfgVHT.ChannelBandwidth = 'CBW80';

Generate a VHT-LTF waveform.

vltfOut = wlanVHTLTF(cfgVHT);
size(vltfOut)

ans = 1×2

 320 1

The 80 MHz waveform is a single OFDM symbol with 320 complex output samples.

24. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

1 Functions — Alphabetical List

1-396

Input Arguments
cfg — Format configuration
wlanVHTConfig object

Format configuration, specified as a wlanVHTConfig object. The wlanVHTLTF function
uses the object properties indicated.

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.
Data Types: char | string

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas, specified as a scalar integer from 1 to 8.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of integers

from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] is the number of space-time streams for each user.

Note The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

 wlanVHTLTF

1-397

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.
Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
apply a beamforming steering matrix, and to rotate and scale the constellation mapper
output vector. If applicable, scale the space-time block coder output instead.
SpatialMappingMatrix applies when the SpatialMapping property is set to
'Custom'. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

• When specified as a scalar, a constant value applies to all the subcarriers.
• When specified as a matrix, the size must be NSTS_Total-by-NT. The spatial mapping

matrix applies to all the subcarriers. NSTS_Total is the sum of space-time streams for all
users, and NT is the number of transmit antennas.

• When specified as a 3-D array, the size must be NST-by-NSTS_Total-by-NT. NST is the sum
of the occupied data (NSD) and pilot (NSP) subcarriers, as determined by
ChannelBandwidth. NSTS_Total is the sum of space-time streams for all users. NT is the
number of transmit antennas.

NST increases with channel bandwidth.

ChannelBandwidt
h

Number of
Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW20' 56 52 4
'CBW40' 114 108 6
'CBW80' 242 234 8
'CBW160' 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.

1 Functions — Alphabetical List

1-398

Data Types: double
Complex Number Support: Yes

Output Arguments
y — VHT-LTF time-domain waveform
matrix

“VHT-LTF” on page 1-399 time-domain waveform, returned as an (NS × NVHTLTF)-by-NT
matrix. NS is the number of time-domain samples per NVHTLTF, where NVHTLTF is the
number of OFDM symbols in the VHT-LTF. NT is the number of transmit antennas.

NS is proportional to the channel bandwidth.

ChannelBandwidth NS
'CBW20' 80
'CBW40' 160
'CBW80' 320
'CBW160' 640

See “VHT-LTF Processing” on page 1-400 for waveform generation details.
Data Types: double
Complex Number Support: Yes

Definitions

VHT-LTF
The very high throughput long training field (VHT-LTF) is located between the VHT-STF
and VHT-SIG-B portion of the VHT packet.

 wlanVHTLTF

1-399

It is used for MIMO channel estimation and pilot subcarrier tracking. The VHT-LTF
includes one VHT long training symbol for each spatial stream indicated by the selected
MCS. Each symbol is 4 μs long. A maximum of eight symbols are permitted in the VHT-
LTF.

The VHT-LTF is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.5.

Algorithms

VHT-LTF Processing
The “VHT-LTF” on page 1-399 is used for MIMO channel estimation and pilot subcarrier
tracking. The number of OFDM symbols in the “VHT-LTF” on page 1-399 (NVHTLTF) is
derived from the total number of space-time streams (NSTS_Total). NSTS_Total = ΣNSTS(u) for
user u, u = 0,…, NUsers–1 and NSTS(u) is the number of space-time streams per user.

NSTS_Total NVHTLTF
1 1
2 2
3 4
4 4
5 6
6 6
7 8
8 8

For algorithm details refer to IEEE Std 802.11ac-2013 [1], Section 22.3.4.7.

1 Functions — Alphabetical List

1-400

References
[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanLLTF | wlanVHTConfig | wlanVHTData | wlanVHTLTFChannelEstimate |
wlanVHTLTFDemodulate | wlanVHTSTF

Introduced in R2015b

 wlanVHTLTF

1-401

wlanVHTLTFDemodulate
Demodulate VHT-LTF waveform

Syntax
y = wlanVHTLTFDemodulate(x,cfg)
y = wlanVHTLTFDemodulate(x,cbw,numSTS)
y = wlanVHTLTFDemodulate(___ ,OFDMSymbolOffset)

Description
y = wlanVHTLTFDemodulate(x,cfg) returns demodulated “VHT-LTF” on page 1-41025

waveform y given time-domain input signal x and wlanVHTConfig object cfg.

y = wlanVHTLTFDemodulate(x,cbw,numSTS) demodulates the received signal for the
specified channel bandwidth, cbw, and number of space-time streams, numSTS.

y = wlanVHTLTFDemodulate(___ ,OFDMSymbolOffset) specifies the OFDM symbol
offset as a fraction of the cyclic prefix length.

Examples

Demodulate Received VHT-LTF Signal

Create a VHT format configuration object.

vht = wlanVHTConfig;

Generate a VHT-LTF signal.

txVHTLTF = wlanVHTLTF(vht);

25. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

1 Functions — Alphabetical List

1-402

Add white noise to the signal.

rxVHTLTF = awgn(txVHTLTF,1);

Demodulate the received signal.

y = wlanVHTLTFDemodulate(rxVHTLTF,vht);

Demodulate VHT-LTF and Estimate Channel Coefficients

Specify a VHT format configuration object and generate a VHT-LTF.

vht = wlanVHTConfig;
txltf = wlanVHTLTF(vht);

Multiply the transmitted VHT-LTF by 0.1 + 0.1i . Pass the signal through an AWGN
channel.

rxltfNoNoise = txltf * complex(0.1,0.1);
rxltf = awgn(rxltfNoNoise,20,'measured');

Demodulated the received VHT-LTF with a symbol offset of 0.5.

dltf = wlanVHTLTFDemodulate(rxltf,vht,0.5);

Estimate the channel using the demodulated VHT-LTF. Plot the result.

chEst = wlanVHTLTFChannelEstimate(dltf,vht);
scatterplot(chEst)

 wlanVHTLTFDemodulate

1-403

The estimate is very close to the previously introduced 0.1+0.1i multiplier.

Extract VHT-LTF and Recover VHT Data

Generate a VHT waveform. Extract and demodulate the VHT-LTF to estimate the channel
coefficients. Recover the data field using the channel estimate and use this to determine
the number of bit errors.

Configure a VHT format object with two paths.

vht = wlanVHTConfig('NumTransmitAntennas',2,'NumSpaceTimeStreams',2);

1 Functions — Alphabetical List

1-404

Generate a random PSDU and create the corresponding VHT waveform.

txPSDU = randi([0 1],8*vht.PSDULength,1);
txSig = wlanWaveformGenerator(txPSDU,vht);

Pass the signal through a TGac 2x2 MIMO channel.

tgacChan = wlanTGacChannel('NumTransmitAntennas',2,'NumReceiveAntennas',2, ...
 'LargeScaleFadingEffect','Pathloss and shadowing');
rxSigNoNoise = tgacChan(txSig);

Add AWGN to the received signal. Set the noise variance for the case in which the
receiver has a 9 dB noise figure.

nVar = 10^((-228.6+10*log10(290)+10*log10(80e6)+9)/10);
awgnChan = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);
rxSig = awgnChan(rxSigNoNoise);

Determine the indices for the VHT-LTF and extract the field from the received signal.

indVHT = wlanFieldIndices(vht,'VHT-LTF');
rxLTF = rxSig(indVHT(1):indVHT(2),:);

Demodulate the VHT-LTF and estimate the channel coefficients.

dLTF = wlanVHTLTFDemodulate(rxLTF,vht);
chEst = wlanVHTLTFChannelEstimate(dLTF,vht);

Extract the data field and recover the information bits.

indData = wlanFieldIndices(vht,'VHT-Data');
rxData = rxSig(indData(1):indData(2),:);
rxPSDU = wlanVHTDataRecover(rxData,chEst,nVar,vht);

Determine the number of bit errors.

numErrs = biterr(txPSDU,rxPSDU)

numErrs = 0

 wlanVHTLTFDemodulate

1-405

Recover VHT-Data Field in MU-MIMO Channel

Recover VHT-Data field bits for a multiuser transmission using channel estimation on a
VHT-LTF field over a quasi-static fading channel.

Create a VHT configuration object having a 160 MHz channel bandwidth, two users, and
four transmit antennas. Assign one space-time stream to the first user and three space-
time streams to the second user.

cbw = 'CBW160';
numSTS = [1 3];
vht = wlanVHTConfig('ChannelBandwidth',cbw,'NumUsers',2, ...
 'NumTransmitAntennas',4,'NumSpaceTimeStreams',numSTS);

Because there are two users, the PSDU length is a 1-by-2 row vector.

psduLen = vht.PSDULength

psduLen = 1×2

 1050 3156

Generate multiuser input data. This data must be in the form of a 1-by- N cell array,
where N is the number of users.

txDataBits{1} = randi([0 1],8*vht.PSDULength(1),1);
txDataBits{2} = randi([0 1],8*vht.PSDULength(2),1);

Generate VHT-LTF and VHT-Data field signals.

txVHTLTF = wlanVHTLTF(vht);
txVHTData = wlanVHTData(txDataBits,vht);

Pass the data field for the first user through a 4x1 channel because it consists of a single
space-time stream. Pass the second user's data through a 4x3 channel because it consists
of three space-time streams. Apply white Gaussian noise to each user signal.

snr = 15;
H1 = 1/sqrt(2)*complex(randn(4,1),randn(4,1));
H2 = 1/sqrt(2)*complex(randn(4,3),randn(4,3));

rxVHTData1 = awgn(txVHTData*H1,snr,'measured');
rxVHTData2 = awgn(txVHTData*H2,snr,'measured');

1 Functions — Alphabetical List

1-406

Repeat the process for the VHT-LTF fields.

rxVHTLTF1 = awgn(txVHTLTF*H1,snr,'measured');
rxVHTLTF2 = awgn(txVHTLTF*H2,snr,'measured');

Calculate the received signal power for both users and use it to estimate the noise
variance.

powerDB1 = 10*log10(var(rxVHTData1));
noiseVarEst1 = mean(10.^(0.1*(powerDB1-snr)));

powerDB2 = 10*log10(var(rxVHTData2));
noiseVarEst2 = mean(10.^(0.1*(powerDB2-snr)));

Estimate the channel characteristics using the VHT-LTF fields.

demodVHTLTF1 = wlanVHTLTFDemodulate(rxVHTLTF1,cbw,numSTS);
chanEst1 = wlanVHTLTFChannelEstimate(demodVHTLTF1,cbw,numSTS);

demodVHTLTF2 = wlanVHTLTFDemodulate(rxVHTLTF2,cbw,numSTS);
chanEst2 = wlanVHTLTFChannelEstimate(demodVHTLTF2,cbw,numSTS);

Recover VHT-Data field bits for the first user and compare against the original payload
bits.

rxDataBits1 = wlanVHTDataRecover(rxVHTData1,chanEst1,noiseVarEst1,vht,1);
[~,ber1] = biterr(txDataBits{1},rxDataBits1)

ber1 = 0.4983

Determine the number of bit errors for the second user.

rxDataBits2 = wlanVHTDataRecover(rxVHTData2,chanEst2,noiseVarEst2,vht,2);
[~,ber2] = biterr(txDataBits{2},rxDataBits2)

ber2 = 0.0972

The bit error rates are quite high because there is no precoding to mitigate the
interference between streams. This is especially evident for the user 1 receiver because it
receives energy from the three streams intended for user 2. The example is intended to
show the workflow and proper syntaxes for the LTF demodulate, channel estimation, and
data recovery functions.

 wlanVHTLTFDemodulate

1-407

Input Arguments
x — Time-domain input signal
matrix

Time-domain input signal corresponding to the VHT-LTF of the PPDU, specified as a
matrix of size NS-by-NR. NS is the number of samples. NR is the number of receive
antennas. NS can be greater than or equal to the VHT-LTF length as indicated by cfg.
Trailing samples at the end of x are not used.
Data Types: double

cfg — VHT format configuration
wlanVHTConfig object

VHT format configuration, specified as a wlanVHTConfig object. The function uses the
following wlanVHTConfig object properties:

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.
Data Types: char | string

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of integers

from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] is the number of space-time streams for each user.

Note The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

1 Functions — Alphabetical List

1-408

cbw — Channel bandwidth
'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users.
Data Types: char | string

numSTS — Number of space-time streams
integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of integers

from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] indicates that one space-time stream is assigned to user 1, three
space-time streams are assigned to user 2, and two space-time streams are assigned to
user 3.

Note The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

 wlanVHTLTFDemodulate

1-409

Data Types: double

Output Arguments
y — Demodulated VHT-LTF waveform
matrix | 3-D array

Demodulated VHT-LTF waveform, returned as an NST-by-NSYM-by-NR array. NST is the
number of data and pilot subcarriers, NSYM is the number of OFDM symbols in the VHT-
LTF, and NR is the number of receive antennas.

If the received VHT-LTF signal, x, is empty, then the output is also empty.
Data Types: double

Definitions

VHT-LTF
The very high throughput long training field (VHT-LTF) is located between the VHT-STF
and VHT-SIG-B portion of the VHT packet.

1 Functions — Alphabetical List

1-410

It is used for MIMO channel estimation and pilot subcarrier tracking. The VHT-LTF
includes one VHT long training symbol for each spatial stream indicated by the selected
MCS. Each symbol is 4 μs long. A maximum of eight symbols are permitted in the VHT-
LTF.

The VHT-LTF is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.5.

References
[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

 wlanVHTLTFDemodulate

1-411

See Also
wlanVHTConfig | wlanVHTLTF | wlanVHTLTFChannelEstimate

Introduced in R2015b

1 Functions — Alphabetical List

1-412

wlanVHTSIGA
Generate VHT-SIG-A waveform

Syntax
y= wlanVHTSIGA(cfg)
[y,bits] = wlanVHTSIGA(cfg)

Description
y= wlanVHTSIGA(cfg) generates a “VHT-SIG-A” on page 1-42026 time-domain waveform
for the specified configuration object. See “VHT-SIG-A Processing” on page 1-422 for
waveform generation details.

[y,bits] = wlanVHTSIGA(cfg) also outputs “VHT-SIG-A” on page 1-420 information
bits.

Examples

Generate VHT-SIG-A Waveform

Generate the VHT-SIG-A waveform for an 80 MHz transmission packet.

Create a VHT configuration object, assign an 80 MHz channel bandwidth, and generate
the waveform.

cfgVHT = wlanVHTConfig;
cfgVHT.ChannelBandwidth = 'CBW80';
y = wlanVHTSIGA(cfgVHT);
size(y)

26. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

 wlanVHTSIGA

1-413

ans = 1×2

 640 1

The 80 MHz waveform has two OFDM symbols and is a total of 640 samples long. Each
symbol contains 320 samples.

Extract VHT-SIG-A Bandwidth Information

Generate the VHT-SIG-A waveform for a 40 MHz transmission packet.

Create a VHT configuration object, and assign a 40 MHz channel bandwidth.

cfgVHT = wlanVHTConfig;
cfgVHT.ChannelBandwidth = 'CBW40';

Generate the VHT-SIG-A waveform and information bits.

[y,bits] = wlanVHTSIGA(cfgVHT);

Extract the bandwidth from the returned bits and analyze. The bandwidth information is
contained in the first two bits.

bwBits = bits(1:2);
bi2de(bwBits)

ans = 2x1 int8 column vector

 1
 0

As defined in IEEE Std 802.11ac-2013, Table 22-12, a value of '1' corresponds to 40
MHz bandwidth.

Input Arguments
cfg — Format configuration
wlanVHTConfig object

1 Functions — Alphabetical List

1-414

Format configuration, specified as a wlanVHTConfig object. The wlanVHTSIGA function
uses the object properties indicated.

User Scenario Applicable Object Properties
Multi-user ChannelBandwidth, NumUsers,

UserPositions, NumTransmitAntennas,
NumSpaceTimeStreams,
SpatialMapping, STBC, ChannelCoding,
GuardInterval, and GroupID

Single user ChannelBandwidth, NumUsers,
NumTransmitAntennas,
NumSpaceTimeStreams,
SpatialMapping, STBC, MCS,
ChannelCoding, GuardInterval,
GroupID, Beamforming, and PartialAID

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.
Data Types: char | string

NumUsers — Number of users
1 (default) | 2 | 3 | 4

Number of users, specified as 1, 2, 3, or 4. (NUsers)
Data Types: double

UserPositions — Position of users
[0 1] (default) | row vector of integers from 0 to 3 in strictly increasing order

Position of users, specified as an integer row vector with length equal to NumUsers and
element values from 0 to 3 in a strictly increasing order. This property applies when
NumUsers > 1.
Example: [0 2 3] indicates positions for three users, where the first user occupies
position 0, the second user occupies position 2, and the third user occupies position 3.
Data Types: double

 wlanVHTSIGA

1-415

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas, specified as a scalar integer from 1 to 8.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of integers

from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] is the number of space-time streams for each user.

Note The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.
Data Types: char | string

Beamforming — Enable signaling of a transmission with beamforming
true (default) | false

Enable signaling of a transmission with beamforming, specified as a logical. Beamforming
is performed when setting is true. This property applies when NumUsers equals 1 and
SpatialMapping is set to 'Custom'. The SpatialMappingMatrix property specifies
the beamforming steering matrix.
Data Types: logical

1 Functions — Alphabetical List

1-416

STBC — Enable space-time block coding
false (default) | true

Enable space-time block coding (STBC) of the PPDU data field, specified as a logical.
STBC transmits multiple copies of the data stream across assigned antennas.

• When set to false, no STBC is applied to the data field, and the number of space-time
streams is equal to the number of spatial streams.

• When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

See IEEE 802.11ac-2013, Section 22.3.10.9.4 for further description.

Note STBC is relevant for single-user transmissions only.

Data Types: logical

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 9 | 1-by-NUsers vector of integers

Modulation and coding scheme used in transmitting the current packet, specified as a
scalar or vector.

• For a single user, the MCS value is a scalar integer from 0 to 9.
• For multiple users, MCS is a 1-by-NUsers vector of integers or a scalar with values from

0 to 9, where the vector length, NUsers, is an integer from 1 to 4.

MCS Modulation Coding Rate
0 BPSK 1/2
1 QPSK 1/2
2 QPSK 3/4
3 16QAM 1/2
4 16QAM 3/4
5 64QAM 2/3
6 64QAM 3/4
7 64QAM 5/6

 wlanVHTSIGA

1-417

MCS Modulation Coding Rate
8 256QAM 3/4
9 256QAM 5/6

Data Types: double

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default) or
'LDPC'. 'BCC' indicates binary convolutional coding and 'LDPC' indicates low density
parity check coding. Providing a character vector or a single cell character vector defines
the channel coding type for a single user or all users in a multiuser transmission. By
providing a cell array different channel coding types can be specified per user for a
multiuser transmission.
Data Types: char | cell | string

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char | string

GroupID — Group identification number
63 (default) | integer from 0 to 63

Group identification number, specified as a scalar integer from 0 to 63.

• A group identification number of either 0 or 63 indicates a VHT single-user PPDU.
• A group identification number from 1 to 62 indicates a VHT multi-user PPDU.

Data Types: double

PartialAID — Abbreviated indication of the PSDU recipient
275 (default) | integer from 0 to 511

Abbreviated indication of the PSDU recipient, specified as a scalar integer from 0 to 511.

1 Functions — Alphabetical List

1-418

• For an uplink transmission, the partial identification number is the last nine bits of the
basic service set identifier (BSSID).

• For a downlink transmission, the partial identification of a client is an identifier that
combines the association ID with the BSSID of its serving AP.

For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

Output Arguments
y — VHT-SIG-A time-domain waveform
matrix

“VHT-SIG-A” on page 1-420 time-domain waveform, returned as an NS-by-NT matrix. NS is
the number of time-domain samples, and NT is the number of transmit antennas.

NS is proportional to the channel bandwidth. The time-domain waveform consists of two
symbols.

ChannelBandwidth NS
'CBW20' 160
'CBW40' 320
'CBW80' 640
'CBW160' 1280

See “VHT-SIG-A Processing” on page 1-422 for waveform generation details.
Data Types: double
Complex Number Support: Yes

bits — Signaling bits used for the VHT-SIG-A field
48-bit column vector

Signaling bits used for the “VHT-SIG-A” on page 1-420, returned as a 48-bit column
vector.
Data Types: int8

 wlanVHTSIGA

1-419

Definitions

VHT-SIG-A
The very high throughput signal A (VHT-SIG-A) field contains information required to
interpret VHT format packets. Similar to the non-HT signal (L-SIG) field for the non-HT
OFDM format, this field stores the actual rate value, channel coding, guard interval,
MIMO scheme, and other configuration details for the VHT format packet. Unlike the HT-
SIG field, this field does not store the packet length information. Packet length
information is derived from L-SIG and is captured in the VHT-SIG-B field for the VHT
format.

The VHT-SIG-A field consists of two symbols: VHT-SIG-A1 and VHT-SIG-A2. These symbols
are located between the L-SIG and the VHT-STF portion of the VHT format PPDU.

The VHT-SIG-A field is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.3.

1 Functions — Alphabetical List

1-420

The VHT-SIG-A field includes these components. The bit field structures for VHT-SIG-A1
and VHT-SIG-A2 vary for single user or multi-user transmissions.

• BW — A two-bit field that indicates 0 for 20 MHz, 1 for 40 MHz, 2 for 80 MHz, or 3 for
160 MHz.

• STBC — A bit that indicates the presence of space-time block coding.
• Group ID — A six-bit field that indicates the group and user position assigned to a

STA.
• NSTS — A three-bit field for a single user or 4 three-bit fields for a multi-user scenario,

that indicates the number of space-time streams per user.
• Partial AID — An identifier that combines the association ID and the BSSID.
• TXOP_PS_NOT_ALLOWED — An indicator bit that shows if client devices are allowed

to enter dose state. This bit is set to false when the VHT-SIG-A structure is populated,
indicating that the client device is allowed to enter dose state.

• Short GI — A bit that indicates use of the 400 ns guard interval.
• Short GI NSYM Disambiguation — A bit that indicates if an extra symbol is

required when the short GI is used.
• SU/MU[0] Coding — A bit field that indicates if convolutional or LDPC coding is used

for a single user or for user MU[0] in a multi-user scenario.
• LDPC Extra OFDM Symbol — A bit that indicates if an extra OFDM symbol is

required to transmit the data field.
• MCS — A four-bit field.

• For a single user scenario, it indicates the modulation and coding scheme used.
• For a multi-user scenario, it indicates use of convolutional or LDPC coding and the

MCS setting is conveyed in the VHT-SIG-B field.

 wlanVHTSIGA

1-421

• Beamformed — An indicator bit set to 1 when a beamforming matrix is applied to the
transmission.

• CRC — An eight-bit field used to detect errors in the VHT-SIG-A transmission.
• Tail — A six-bit field used to terminate the convolutional code.

Algorithms

VHT-SIG-A Processing
The “VHT-SIG-A” on page 1-420 field includes information required to process VHT format
packets.

For algorithm details, refer to IEEE Std 802.11ac-2013 [1], Section 22.3.4.5. The
wlanVHTSIGA function performs transmitter processing on the “VHT-SIG-A” on page 1-
420 field and outputs the time-domain waveform.

1 Functions — Alphabetical List

1-422

 wlanVHTSIGA

1-423

References
[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanLSIG | wlanVHTConfig | wlanVHTSIGARecover | wlanVHTSTF

Introduced in R2015b

1 Functions — Alphabetical List

1-424

wlanVHTSIGARecover
Recover VHT-SIG-A information bits

Syntax
recBits = wlanVHTSIGARecover(rxSig,chEst,noiseVarEst,cbw)
recBits = wlanVHTSIGARecover(rxSig,chEst,noiseVarEst,cbw,cfgRec)
[recBits,failCRC] = wlanVHTSIGARecover(___)
[recBits,failCRC,eqSym] = wlanVHTSIGARecover(___)
[recBits,failCRC,eqSym,cpe] = wlanVHTSIGARecover(___)

Description
recBits = wlanVHTSIGARecover(rxSig,chEst,noiseVarEst,cbw) returns the
recovered information bits from the “VHT-SIG-A” on page 1-43327 field. Inputs include the
received “VHT-SIG-A” on page 1-433 field, the channel estimate, the noise variance
estimate, and the channel bandwidth.

recBits = wlanVHTSIGARecover(rxSig,chEst,noiseVarEst,cbw,cfgRec)
specifies algorithm information using wlanRecoveryConfig object cfgRec.

[recBits,failCRC] = wlanVHTSIGARecover(___) returns the failure status of the
CRC check, failCRC, using the arguments from previous syntaxes.

[recBits,failCRC,eqSym] = wlanVHTSIGARecover(___) returns the equalized
symbols, eqSym.

[recBits,failCRC,eqSym,cpe] = wlanVHTSIGARecover(___) returns the
common phase error, cpe.

Examples

27. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

 wlanVHTSIGARecover

1-425

Recover VHT-SIG-A Information Bits

Recover the information bits in the VHT-SIG-A field by performing channel estimation on
the L-LTF over a 1x2 quasi-static fading channel

Create a wlanVHTConfig object having a channel bandwidth of 80 MHz. Generate L-LTF
and VHT-SIG-A field signals using this object.

cfg = wlanVHTConfig('ChannelBandwidth','CBW80');
txLLTF = wlanLLTF(cfg);
[txVHTSIGA, txBits] = wlanVHTSIGA(cfg);
chanBW = cfg.ChannelBandwidth;
noiseVarEst = 0.1;

Pass the L-LTF and VHT-SIG-A signals through a 1x2 quasi-static fading channel with
AWGN.

H = 1/sqrt(2)*complex(randn(1,2),randn(1,2));
rxLLTF = awgn(txLLTF*H,10);
rxVHTSIGA = awgn(txVHTSIGA*H,10);

Perform channel estimation based on the L-LTF.

demodLLTF = wlanLLTFDemodulate(rxLLTF,chanBW,1);
chanEst = wlanLLTFChannelEstimate(demodLLTF,chanBW);

Recover the VHT-SIG-A. Verify that the CRC check was successful.

[rxBits,failCRC] = wlanVHTSIGARecover(rxVHTSIGA,chanEst,noiseVarEst,'CBW80');
failCRC

failCRC = logical
 0

The CRC failure check returns a 0, indicating that the CRC passed.

Compare the transmitted bits to the received bits. Confirm that the reported CRC result is
correct because the output matches the input.

isequal(txBits,rxBits)

ans = logical
 1

1 Functions — Alphabetical List

1-426

Recover VHT-SIG-A Using Zero-Forcing Equalizer

Recover the VHT-SIG-A in an AWGN channel. Configure the VHT signal to have a 160
MHz channel bandwidth, one space-time stream, and one receive antenna.

Create a wlanVHTConfig object having a channel bandwidth of 160 MHz. Using the
object to create a VHT-SIG-A waveform.

cfg = wlanVHTConfig('ChannelBandwidth','CBW160');

Generate L-LTF and VHT-SIG-A field signals.

txLLTF = wlanLLTF(cfg);
[txSig,txBits] = wlanVHTSIGA(cfg);
chanBW = cfg.ChannelBandwidth;
noiseVar = 0.1;

Pass the transmitted VHT-SIG-A through an AWGN channel.

awgnChan = comm.AWGNChannel('NoiseMethod','Variance','Variance',noiseVar);
rxLLTF = awgnChan(txLLTF);
rxSig = awgnChan(txSig);

Using wlanRecoveryConfig, set the equalization method to zero-forcing, 'ZF'.

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF');

Perform channel estimation based on the L-LTF.

demodLLTF = wlanLLTFDemodulate(rxLLTF,chanBW,1);
chanEst = wlanLLTFChannelEstimate(demodLLTF,chanBW);

Recover the VHT-SIG-A. Verify that there are no bit errors in the received information.

[rxBits,crcFail] = wlanVHTSIGARecover(rxSig,chanEst,noiseVar,'CBW160',cfgRec);
crcFail

crcFail = logical
 0

 wlanVHTSIGARecover

1-427

The CRC failure check returns a 0, indicating the CRC passed. Comparing the transmitted
bits to the received bits reconfirms the reported CRC result because the output matches
the input.

biterr(txBits,rxBits)

ans = 0

Recover VHT-SIG-A in 2x2 MIMO Channel

Recover VHT-SIG-A in a 2x2 MIMO channel with AWGN. Confirm that the CRC check
passes.

Configure a 2x2 MIMO VHT channel.

chanBW = 'CBW20';
cfgVHT = wlanVHTConfig('ChannelBandwidth', chanBW, 'NumTransmitAntennas', 2, 'NumSpaceTimeStreams', 2);

Generate L-LTF and VHT-SIG-A waveforms.

txLLTF = wlanLLTF(cfgVHT);
txVHTSIGA = wlanVHTSIGA(cfgVHT);

Pass the L-LTF and VHT-SIG-A waveforms through a 2×2 MIMO channel with white noise.

mimoChan = comm.MIMOChannel('SampleRate', 20e6);
rxLLTF = awgn(mimoChan(txLLTF), 15);
rxVHTSIGA = awgn(mimoChan(txVHTSIGA),15);

Demodulate the L-LTF signal. To generate a channel estimate, use the demodulated L-LTF.

demodLLTF = wlanLLTFDemodulate(rxLLTF, chanBW, 1);
chanEst = wlanLLTFChannelEstimate(demodLLTF, chanBW);

Recover the information bits in VHT-SIG-A.

[recVHTSIGABits, failCRC, eqSym] = wlanVHTSIGARecover(rxVHTSIGA, chanEst, 0, chanBW);

Visualize the scatter plot of the equalized symbols, eqSym.

scatterplot(eqSym(:))

1 Functions — Alphabetical List

1-428

Input Arguments
rxSig — Received VHT-SIG-A
matrix

Received VHT-SIG-A field, specified as an NS-by-NR matrix. NS is the number of samples
and increases with channel bandwidth.

Channel Bandwidth NS

'CBW20' 160

 wlanVHTSIGARecover

1-429

Channel Bandwidth NS

'CBW40' 320
'CBW80' 640
'CBW160' 1280

NR is the number of receive antennas.
Data Types: double

chEst — Channel estimate
3-D array

Channel estimate, specified as an NST-by-1-by-NR array. NST is the number of occupied
subcarriers and increases with channel bandwidth.

Channel Bandwidth NST

'CBW20' 52
'CBW40' 104
'CBW80' 208
'CBW160' 416

NR is the number of receive antennas.

The channel estimate is based on the “L-LTF” on page 1-433.
Data Types: double

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.
Data Types: double

cbw — Channel bandwidth
'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth in MHz, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'.
Data Types: char | string

1 Functions — Alphabetical List

1-430

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters, specified as a wlanRecoveryConfig object. The function uses
these properties:

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

Data Types: double

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

Equalization method, specified as 'MMSE' or 'ZF'.

• 'MMSE' indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF' indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'

 wlanVHTSIGARecover

1-431

Data Types: char | string

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char | string

Output Arguments
recBits — Recovered VHT-SIG-A information bits
column vector

Recovered VHT-SIG-A information bits, returned as a 48-by-1 column vector. See “VHT-
SIG-A” on page 1-433 for more information.

failCRC — CRC failure check
true | false

CRC failure check, returned as true if the CRC check fails or false if the CRC check
passes.

eqSym — Equalized symbols
matrix

Equalized symbols at the data carrying subcarriers, returned as 48-by-2 matrix. Each 20
MHz channel bandwidth segment has two symbols and 48 data carrying subcarriers.
These segments are combined into a single 48-by-2 matrix that comprises the “VHT-SIG-
A” on page 1-433 field.

cpe — Common phase error
column vector

Common phase error in radians, returned as a 2-by-1 column vector.

1 Functions — Alphabetical List

1-432

Definitions

VHT-SIG-A
The very high throughput signal A (VHT-SIG-A) field consists of two symbols: VHT-SIG-A1
and VHT-SIG-A2. The VHT-SIG-A field carries information required to interpret VHT PPDU
information.

For VHT-SIG-A field bit details, refer to IEEE Std 802.11ac-2013 [1], Table 22-12.

L-LTF
The legacy long training field (L-LTF) is the second field in the 802.11 OFDM PLCP legacy
preamble. The L-LTF is a component of VHT, HT, and non-HT PPDUs.

 wlanVHTSIGARecover

1-433

Channel estimation, fine frequency offset estimation, and fine symbol timing offset
estimation rely on the L-LTF.

The L-LTF is composed of a cyclic prefix (CP) followed by two identical long training
symbols (C1 and C2). The CP consists of the second half of the long training symbol.

The L-LTF duration varies with channel bandwidth.

1 Functions — Alphabetical List

1-434

Channel
Bandwidth
(MHz)

Subcarrier
Frequency
Spacing, ΔF
(kHz)

Fast Fourier
Transform
(FFT) Period
(TFFT = 1 / ΔF)

Cyclic Prefix or
Training
Symbol Guard
Interval (GI2)
Duration
(TGI2 = TFFT / 2)

L-LTF Duration
(TLONG = TGI2 +
2 × TFFT)

20, 40, 80, and
160

312.5 3.2 μs 1.6 μs 8 μs

10 156.25 6.4 μs 3.2 μs 16 μs
5 78.125 12.8 μs 6.4 μs 32 μs

PPDU
PLCP protocol data unit

The PPDU is the complete PLCP frame, including PLCP headers, MAC headers, the MAC
data field, and the MAC and PLCP trailers.

Algorithms
VHT-SIG-A Recovery
The “VHT-SIG-A” on page 1-433 field consists of two symbols and resides between the L-
SIG field and the VHT-STF portion of the packet structure for the VHT format “PPDU” on
page 1-435.

For single-user packets, you can recover the length information from the L-SIG and VHT-
SIG-A field information. Therefore, it is not strictly required for the receiver to decode the
“VHT-SIG-A” on page 1-433 field.

 wlanVHTSIGARecover

1-435

For “VHT-SIG-A” on page 1-433 details, refer to IEEE Std 802.11ac-2013 [1], Section
22.3.4.5, and Perahia [2], Section 7.3.2.1.

1 Functions — Alphabetical List

1-436

References
[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[2] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac .
2nd Edition, United Kingdom: Cambridge University Press, 2013.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanLLTF | wlanLLTFChannelEstimate | wlanLLTFDemodulate |
wlanRecoveryConfig | wlanVHTSIGA

Introduced in R2015b

 wlanVHTSIGARecover

1-437

wlanVHTSIGB
Generate VHT-SIG-B waveform

Syntax
y= wlanVHTSIGB(cfg)
[y,bits] = wlanVHTSIGB(cfg)

Description
y= wlanVHTSIGB(cfg) generates a “VHT-SIG-B” on page 1-44328 time-domain
waveform for the specified configuration object. See “VHT-SIG-B Processing” on page 1-
446 for waveform generation details.

[y,bits] = wlanVHTSIGB(cfg) also outputs “VHT-SIG-B” on page 1-443 information
bits.

Examples

Generate VHT-SIG-B Waveform

Generate the VHT-SIG-B waveform for an 80 MHz transmission packet.

Create a VHT configuration object, assign an 80 MHz channel bandwidth, and generate
the waveform.

cfgVHT = wlanVHTConfig('ChannelBandwidth','CBW80');
vhtsigb = wlanVHTSIGB(cfgVHT);
size(vhtsigb)

ans = 1×2

28. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

1 Functions — Alphabetical List

1-438

 320 1

The 80 MHz waveform has one OFDM symbol and is a total of 320 samples long.

Input Arguments
cfg — Format configuration
wlanVHTConfig object

Format configuration, specified as a wlanVHTConfig object. The wlanVHTSIGB function
uses the object properties indicated.

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.
Data Types: char | string

NumUsers — Number of users
1 (default) | 2 | 3 | 4

Number of users, specified as 1, 2, 3, or 4. (NUsers)
Data Types: double

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas, specified as a scalar integer from 1 to 8.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

 wlanVHTSIGB

1-439

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of integers

from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] is the number of space-time streams for each user.

Note The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.
Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
apply a beamforming steering matrix, and to rotate and scale the constellation mapper
output vector. If applicable, scale the space-time block coder output instead.
SpatialMappingMatrix applies when the SpatialMapping property is set to
'Custom'. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

• When specified as a scalar, a constant value applies to all the subcarriers.
• When specified as a matrix, the size must be NSTS_Total-by-NT. The spatial mapping

matrix applies to all the subcarriers. NSTS_Total is the sum of space-time streams for all
users, and NT is the number of transmit antennas.

• When specified as a 3-D array, the size must be NST-by-NSTS_Total-by-NT. NST is the sum
of the occupied data (NSD) and pilot (NSP) subcarriers, as determined by
ChannelBandwidth. NSTS_Total is the sum of space-time streams for all users. NT is the
number of transmit antennas.

NST increases with channel bandwidth.

1 Functions — Alphabetical List

1-440

ChannelBandwidt
h

Number of
Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW20' 56 52 4
'CBW40' 114 108 6
'CBW80' 242 234 8
'CBW160' 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.
Data Types: double
Complex Number Support: Yes

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 9 | 1-by-NUsers vector of integers

Modulation and coding scheme used in transmitting the current packet, specified as a
scalar or vector.

• For a single user, the MCS value is a scalar integer from 0 to 9.
• For multiple users, MCS is a 1-by-NUsers vector of integers or a scalar with values from

0 to 9, where the vector length, NUsers, is an integer from 1 to 4.

MCS Modulation Coding Rate
0 BPSK 1/2
1 QPSK 1/2
2 QPSK 3/4
3 16QAM 1/2
4 16QAM 3/4
5 64QAM 2/3
6 64QAM 3/4
7 64QAM 5/6
8 256QAM 3/4

 wlanVHTSIGB

1-441

MCS Modulation Coding Rate
9 256QAM 5/6

Data Types: double

APEPLength — Number of bytes in the A-MPDU pre-EOF padding
1024 (default) | integer from 0 to 1,048,575 | vector of integers

Number of bytes in the A-MPDU pre-EOF padding, specified as a scalar integer or vector
of integers.

• For a single user, APEPLength is a scalar integer from 0 to 1,048,575.
• For multi-user, APEPLength is a 1-by-NUsers vector of integers or a scalar with values

from 0 to 1,048,575, where the vector length, NUsers, is an integer from 1 to 4.
• APEPLength = 0 for a null data packet (NDP).

APEPLength is used internally to determine the number of OFDM symbols in the data
field. For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

Output Arguments
y — VHT-SIG-B time-domain waveform
matrix

“VHT-SIG-B” on page 1-443 time-domain waveform, returned as an NS-by-NT matrix. NS is
the number of time-domain samples and NT is the number of transmit antennas.

NS is proportional to the channel bandwidth.

ChannelBandwidth NS
'CBW20' 80
'CBW40' 160
'CBW80' 320
'CBW160' 640

See “VHT-SIG-B Processing” on page 1-446. for waveform generation details.

1 Functions — Alphabetical List

1-442

Data Types: double
Complex Number Support: Yes

bits — Signaling bits used for the VHT-SIG-B field
Nbits column vector

Signaling bits used for “VHT-SIG-B” on page 1-443 field, returned as an Nbits column
vector. Nbits is the number of bits.

The number of output bits changes with the channel bandwidth.

ChannelBandwidth Nb
'CBW20' 26
'CBW40' 27
'CBW80' 29
'CBW160' 29

See “VHT-SIG-B Processing” on page 1-446. for waveform generation details.
Data Types: int8

Definitions
VHT-SIG-B
The very high throughput signal B field (VHT-SIG-B) is used for multi-user scenario to set
up the data rate and to fine-tune MIMO reception. It is modulated using MCS 0 and is
transmitted in a single OFDM symbol.

The VHT-SIG-B field consists of a single OFDM symbol located between the VHT-LTF and
the data portion of the VHT format PPDU.

 wlanVHTSIGB

1-443

The very high throughput signal B (VHT-SIG-B) field contains the actual rate and A-MPDU
length value per user. The VHT-SIG-B is defined in IEEE Std 802.11ac-2013, Section
22.3.8.3.6, and Table 22–14. The number of bits in the VHT-SIG-B field varies with the
channel bandwidth and the assignment depends on whether single user or multi-user
scenario in allocated. For single user configurations, the same information is available in
the L-SIG field but the VHT-SIG-B field is included for continuity purposes.

Field VHT MU PPDU Allocation (bits) VHT SU PPDU Allocation (bits) Descript
ion

 20 MHz 40 MHz 80 MHz,
160 MHz

20 MHz 40 MHz 80 MHz,
160 MHz

VHT-SIG-
B

B0-15 (16) B0-16 (17) B0-18 (19) B0-16 (17) B0-18 (19) B0-20 (21) A
variable-
length
field that
indicates
the size
of the
data
payload
in four-
byte
units.
The
length of
the field
depends
on the
channel
bandwidt
h.

1 Functions — Alphabetical List

1-444

Field VHT MU PPDU Allocation (bits) VHT SU PPDU Allocation (bits) Descript
ion

 20 MHz 40 MHz 80 MHz,
160 MHz

20 MHz 40 MHz 80 MHz,
160 MHz

VHT-MCS B16-19 (4) B17-20 (4) B19-22 (4) N/A N/A N/A A four-bit
field that
is
included
for multi-
user
scenarios
only.

Reserved N/A N/A N/A B17–19
(3)

B19-20 (2) B21-22 (2) All ones

Tail B20-25 (6) B21-26 (6) B23-28 (6) B20-25 (6) B21-26 (6) B23-28 (6) Six zero-
bits used
to
terminate
the
convoluti
onal
code.

Total #
bits

26 27 29 26 27 29

Bit field
repetitio
n

1 2 4

For 160
MHz, the
80 MHz
channel is
repeated
twice.

1 2 4

For 160
MHz, the
80 MHz
channel is
repeated
twice.

For a null data packet (NDP), the VHT-SIG-B bits are set according to IEEE Std
802.11ac-2013, Table 22-15.

 wlanVHTSIGB

1-445

Algorithms

VHT-SIG-B Processing
The “VHT-SIG-B” on page 1-443 field is used to set up the data rate and to fine-tune
MIMO reception. For single user packets, since the length information can be recovered
from the L-SIG and VHT-SIG-A field information, it is not strictly required for the receiver
to decode the “VHT-SIG-B” on page 1-443 field.

For algorithm details, refer to IEEE Std 802.11ac-2013 [1], Section 22.3.4.8.

References
[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanVHTConfig | wlanVHTData | wlanVHTLTF | wlanVHTSIGBRecover

Introduced in R2015b

1 Functions — Alphabetical List

1-446

wlanVHTSIGBRecover
Recover VHT-SIG-B information bits

Syntax
recBits = wlanVHTSIGBRecover(rxSig,chEst,noiseVarEst,cbw)
recBits = wlanVHTSIGBRecover(rxSig,chEst,noiseVarEst,cbw,userNumber,
numSTS)
recBits = wlanVHTSIGBRecover(___ ,cfgRec)

[recBits,eqSym] = wlanVHTSIGBRecover(___)
[recBits,eqSym,cpe] = wlanVHTSIGBRecover(___)

Description
recBits = wlanVHTSIGBRecover(rxSig,chEst,noiseVarEst,cbw) returns the
recovered information bits from the “VHT-SIG-B” on page 1-45629 field for a single-user
transmission. Inputs include the received “VHT-SIG-B” on page 1-456 field, the channel
estimate, the noise variance estimate, and the channel bandwidth.

recBits = wlanVHTSIGBRecover(rxSig,chEst,noiseVarEst,cbw,userNumber,
numSTS) returns the recovered information bits of a multiuser transmission for the user
of interest, userNumber, and the number of space-time streams, numSTS.

recBits = wlanVHTSIGBRecover(___ ,cfgRec) specifies algorithm information
using wlanRecoveryConfig object cfgRec.

[recBits,eqSym] = wlanVHTSIGBRecover(___) returns the equalized symbols,
eqSym, using the arguments from previous syntaxes.

[recBits,eqSym,cpe] = wlanVHTSIGBRecover(___) returns the common phase
error, cpe.

29. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

 wlanVHTSIGBRecover

1-447

Examples

Recover VHT-SIG-B Information Bits

Recover VHT-SIG-B bits in a perfect channel having 80 MHz channel bandwidth, one
space-time stream, and one receive antenna.

Create a wlanVHTConfig object having a channel bandwidth of 80 MHz. Using the
object, create a VHT-SIG-B waveform.

cfg = wlanVHTConfig('ChannelBandwidth','CBW80');
[txSig,txBits] = wlanVHTSIGB(cfg);

For a channel bandwidth of 80 MHz, there are 242 occupied subcarriers. The channel
estimate array dimensions for this example must be [Nst,Nsts,Nr] = [242,1,1]. The
example assumes a perfect channel and one receive antenna. Therefore, specify the
channel estimate as a column vector of ones and the noise variance estimate as zero.

chEst = ones(242,1);
noiseVarEst = 0;

Recover the VHT-SIG-B. Verify that the received information bits are identical to the
transmitted bits.

rxBits = wlanVHTSIGBRecover(txSig,chEst,noiseVarEst,'CBW80');
isequal(txBits,rxBits)

ans = logical
 1

Recover VHT-SIG-B Using Zero-Forcing Equalizer

Recover the VHT-SIG-B using a zero-forcing equalizer in an AWGN channel having 160
MHz channel bandwidth, one space-time stream, and one receive antenna.

Create a wlanVHTConfig object having a channel bandwidth of 160 MHz. Using the
object, create a VHT-SIG-B waveform.

1 Functions — Alphabetical List

1-448

cfg = wlanVHTConfig('ChannelBandwidth','CBW160');
[txSig,txBits] = wlanVHTSIGB(cfg);

Pass the transmitted VHT-SIG-B through an AWGN channel.

awgnChan = comm.AWGNChannel('NoiseMethod','Variance','Variance',0.1);

rxSig = awgnChan(txSig);

Using wlanRecoveryConfig, set the equalization method to zero-forcing, 'ZF'.

cfgRec = wlanRecoveryConfig('EqualizationMethod','ZF');

Recover the VHT-SIG-B. Verify that the received information has no bit errors.

rxBits = wlanVHTSIGBRecover(rxSig,ones(484,1),0.1,'CBW160',cfgRec);
numErr = biterr(txBits,rxBits)

numErr = 0

Recover VHT-SIG-B in 2x2 MIMO Channel

Recover VHT-SIG-B in a 2x2 MIMO channel for an SNR=10 dB and a receiver that has a 9
dB noise figure. Confirm that the information bits are recovered correctly.

Set the channel bandwidth and the corresponding sample rate.

cbw = 'CBW20';
fs = 20e6;

Create a VHT configuration object with 20 MHz bandwidth and two transmission paths.
Generate the L-LTF and VHT-SIG-B waveforms.

vht = wlanVHTConfig('ChannelBandwidth',cbw,'NumTransmitAntennas',2, ...
 'NumSpaceTimeStreams',2);

txVHTLTF = wlanVHTLTF(vht);
[txVHTSIGB,txVHTSIGBBits] = wlanVHTSIGB(vht);

Pass the VHT-LTF and VHT-SIG-B waveforms through a 2x2 TGac channel.

tgacChan = wlanTGacChannel('NumTransmitAntennas',2, ...
 'NumReceiveAntennas',2, 'ChannelBandwidth',cbw,'SampleRate',fs);

 wlanVHTSIGBRecover

1-449

rxVHTLTF = tgacChan(txVHTLTF);
rxVHTSIGB = tgacChan(txVHTSIGB);

Add white noise for an SNR = 10dB.

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...
 'SNR',10);

rxVHTLTF = chNoise(rxVHTLTF);
rxVHTSIGB = chNoise(rxVHTSIGB);

Add additional white noise corresponding to a receiver with a 9 dB noise figure. The noise
variance is equal to k*T*B*F, where k is Boltzmann's constant, T is the ambient
temperature, B is the channel bandwidth (sample rate), and F is the receiver noise figure.

nVar = 10^((-228.6+10*log10(290)+10*log10(fs)+9)/10);
rxNoise = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

rxVHTLTF = rxNoise(rxVHTLTF);
rxVHTSIGB = rxNoise(rxVHTSIGB);

Demodulate the VHT-LTF signal and use it to generate a channel estimate.

demodVHTLTF = wlanVHTLTFDemodulate(rxVHTLTF,vht);
chEst = wlanVHTLTFChannelEstimate(demodVHTLTF,vht);

Recover the VHT-SIG-B information bits. Display the scatter plot of the equalized symbols.

[recVHTSIGBBits,eqSym,cpe] = wlanVHTSIGBRecover(rxVHTSIGB,chEst,nVar,cbw);
scatterplot(eqSym)

1 Functions — Alphabetical List

1-450

Display the common phase error.

cpe

cpe = 0.0485

Determine the number of errors between the transmitted and received VHT-SIG-B
information bits.

numErr = biterr(txVHTSIGBBits,recVHTSIGBBits)

numErr = 0

 wlanVHTSIGBRecover

1-451

Input Arguments
rxSig — Received VHT-SIG-B
matrix

Received VHT-SIG-B field, specified as an NS-by-NR matrix. NS is the number of samples
and increases with channel bandwidth.

Channel Bandwidth NS

'CBW20' 80
'CBW40' 160
'CBW80' 320
'CBW160' 640

NR is the number of receive antennas.
Data Types: double

chEst — Channel estimate
3-D array

Channel estimate, specified as an NST-by-NSTS-by-NR array. NST is the number of occupied
subcarriers. NSTS is the number of space-time streams. For multiuser transmissions, NSTS
is the total number of space-time streams for all users . NR is the number of receive
antennas.

NST increases with channel bandwidth.

ChannelBandwidth Number of
Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW20' 56 52 4
'CBW40' 114 108 6
'CBW80' 242 234 8
'CBW160' 484 468 16

The channel estimate is based on the “VHT-LTF” on page 1-458.

1 Functions — Alphabetical List

1-452

noiseVarEst — Noise variance estimate
nonnegative scalar

Noise variance estimate, specified as a nonnegative scalar.
Data Types: double

cbw — Channel bandwidth
'CBW20' | 'CBW40' | 'CBW80' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'.
Data Types: char | string

userNumber — Number of the user
integer from 1 to NUsers

Number of the user in a multiuser transmission, specified as an integer having a value
from 1 to NUsers. NUsers is the total number of users.
Data Types: double

numSTS — Number of space-time streams
1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in a multiuser transmission, specified as a vector. The
number of space-time streams is a 1-by-NUsers vector of integers from 1 to 4, where NUsers
is an integer from 1 to 4.
Example: [1 3 2] is the number of space-time streams for each user.

Note The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

cfgRec — Algorithm parameters
wlanRecoveryConfig object

Algorithm parameters, specified as a wlanRecoveryConfig object. The function uses
these properties:

 wlanVHTSIGBRecover

1-453

Note If cfgRec is not provided, the function uses the default values of the
wlanRecoveryConfig object.

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

Data Types: double

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

Equalization method, specified as 'MMSE' or 'ZF'.

• 'MMSE' indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF' indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'
Data Types: char | string

1 Functions — Alphabetical List

1-454

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char | string

Output Arguments
recBits — Recovered VHT-SIG information
vector

Recovered VHT-SIG-B information bits, returned as an Nb-by-1 column vector. Nb is the
number of recovered VHT-SIG-B information bits and increases with the channel
bandwidth. The output is for a single user as determined by userNumber.

The number of output bits is proportional to the channel bandwidth.

ChannelBandwidth Nb

'CBW20' 26
'CBW40' 27
'CBW80' 29
'CBW160' 29

See “VHT-SIG-B” on page 1-456 for information about the meaning of each bit in the field.

eqSym — Equalized symbols
matrix

Equalized symbols, returned as an NSD-by-1 column vector. NSD is the number of data
subcarriers.

NSD increases with the channel bandwidth.

 wlanVHTSIGBRecover

1-455

ChannelBandwidth NSD

'CBW20' 52
'CBW40' 108
'CBW80' 234
'CBW160' 468

cpe — Common phase error
column vector

Common phase error in radians, returned as a scalar.

Definitions

VHT-SIG-B
The very high throughput signal B field (VHT-SIG-B) is used for multi-user scenario to set
up the data rate and to fine-tune MIMO reception. It is modulated using MCS 0 and is
transmitted in a single OFDM symbol.

The VHT-SIG-B field consists of a single OFDM symbol located between the VHT-LTF and
the data portion of the VHT format PPDU.

The very high throughput signal B (VHT-SIG-B) field contains the actual rate and A-MPDU
length value per user. The VHT-SIG-B is defined in IEEE Std 802.11ac-2013, Section
22.3.8.3.6, and Table 22–14. The number of bits in the VHT-SIG-B field varies with the
channel bandwidth and the assignment depends on whether single user or multi-user
scenario in allocated. For single user configurations, the same information is available in
the L-SIG field but the VHT-SIG-B field is included for continuity purposes.

1 Functions — Alphabetical List

1-456

Field VHT MU PPDU Allocation (bits) VHT SU PPDU Allocation (bits) Descript
ion

 20 MHz 40 MHz 80 MHz,
160 MHz

20 MHz 40 MHz 80 MHz,
160 MHz

VHT-SIG-
B

B0-15 (16) B0-16 (17) B0-18 (19) B0-16 (17) B0-18 (19) B0-20 (21) A
variable-
length
field that
indicates
the size
of the
data
payload
in four-
byte
units.
The
length of
the field
depends
on the
channel
bandwidt
h.

VHT-MCS B16-19 (4) B17-20 (4) B19-22 (4) N/A N/A N/A A four-bit
field that
is
included
for multi-
user
scenarios
only.

Reserved N/A N/A N/A B17–19
(3)

B19-20 (2) B21-22 (2) All ones

 wlanVHTSIGBRecover

1-457

Field VHT MU PPDU Allocation (bits) VHT SU PPDU Allocation (bits) Descript
ion

 20 MHz 40 MHz 80 MHz,
160 MHz

20 MHz 40 MHz 80 MHz,
160 MHz

Tail B20-25 (6) B21-26 (6) B23-28 (6) B20-25 (6) B21-26 (6) B23-28 (6) Six zero-
bits used
to
terminate
the
convoluti
onal
code.

Total #
bits

26 27 29 26 27 29

Bit field
repetitio
n

1 2 4

For 160
MHz, the
80 MHz
channel is
repeated
twice.

1 2 4

For 160
MHz, the
80 MHz
channel is
repeated
twice.

For a null data packet (NDP), the VHT-SIG-B bits are set according to IEEE Std
802.11ac-2013, Table 22-15.

VHT-LTF
The very high throughput long training field (VHT-LTF) is located between the VHT-STF
and VHT-SIG-B portion of the VHT packet.

1 Functions — Alphabetical List

1-458

It is used for MIMO channel estimation and pilot subcarrier tracking. The VHT-LTF
includes one VHT long training symbol for each spatial stream indicated by the selected
MCS. Each symbol is 4 μs long. A maximum of eight symbols are permitted in the VHT-
LTF.

The VHT-LTF is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.5.

PPDU
PLCP protocol data unit

The PPDU is the complete PLCP frame, including PLCP headers, MAC headers, the MAC
data field, and the MAC and PLCP trailers.

Algorithms

VHT-SIG-B Recovery
The “VHT-SIG-B” on page 1-456 field consists of one symbol and resides between the
VHT-LTF field and the data portion of the packet structure for the VHT format PPDUs.

For single-user packets, you can recover the length information from the L-SIG and VHT-
SIG-A field information. Therefore, it is not strictly required for the receiver to decode the
“VHT-SIG-B” on page 1-456 field. For multiuser transmissions, recovering the VHT-SIG-B
field provides packet length and MCS information for each user.

 wlanVHTSIGBRecover

1-459

1 Functions — Alphabetical List

1-460

For “VHT-SIG-B” on page 1-456 details, refer to IEEE Std 802.11ac™-2013 [1], Section
22.3.4.8, and Perahia [2], Section 7.3.2.4.

References
[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[2] Perahia, E., and R. Stacey. Next Generation Wireless LANs: 802.11n and 802.11ac .
2nd Edition, United Kingdom: Cambridge University Press, 2013.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanRecoveryConfig | wlanVHTConfig | wlanVHTLTFChannelEstimate |
wlanVHTLTFDemodulate | wlanVHTSIGB

Introduced in R2015b

 wlanVHTSIGBRecover

1-461

wlanVHTSTF
Generate VHT-STF waveform

Syntax
y = wlanVHTSTF(cfg)

Description
y = wlanVHTSTF(cfg) generates a “VHT-STF” on page 1-46630 time-domain waveform
for the specified configuration object. See “VHT-STF Processing” on page 1-467 for
waveform generation details.

Examples

Generate VHT-STF Waveform

Create a VHT configuration object with an 80 MHz channel bandwidth. Generate and plot
the VHT-STF waveform.

cfgVHT = wlanVHTConfig;
cfgVHT.ChannelBandwidth = 'CBW80';

vstfOut = wlanVHTSTF(cfgVHT);
size(vstfOut);
plot(abs(vstfOut))
xlabel('Samples')
ylabel('Amplitude')

30. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

1 Functions — Alphabetical List

1-462

The 80 MHz waveform is a single OFDM symbol with 320 complex time-domain output
samples. The waveform contains the repeating short training field pattern.

Input Arguments
cfg — Format configuration
wlanVHTConfig object

Format configuration, specified as a wlanVHTConfig object. The wlanVHTSTF function
uses the object properties indicated.

 wlanVHTSTF

1-463

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.
Data Types: char | string

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas, specified as a scalar integer from 1 to 8.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of integers

from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] is the number of space-time streams for each user.

Note The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.
Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

1 Functions — Alphabetical List

1-464

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
apply a beamforming steering matrix, and to rotate and scale the constellation mapper
output vector. If applicable, scale the space-time block coder output instead.
SpatialMappingMatrix applies when the SpatialMapping property is set to
'Custom'. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

• When specified as a scalar, a constant value applies to all the subcarriers.
• When specified as a matrix, the size must be NSTS_Total-by-NT. The spatial mapping

matrix applies to all the subcarriers. NSTS_Total is the sum of space-time streams for all
users, and NT is the number of transmit antennas.

• When specified as a 3-D array, the size must be NST-by-NSTS_Total-by-NT. NST is the sum
of the occupied data (NSD) and pilot (NSP) subcarriers, as determined by
ChannelBandwidth. NSTS_Total is the sum of space-time streams for all users. NT is the
number of transmit antennas.

NST increases with channel bandwidth.

ChannelBandwidt
h

Number of
Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW20' 56 52 4
'CBW40' 114 108 6
'CBW80' 242 234 8
'CBW160' 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.
Data Types: double
Complex Number Support: Yes

Output Arguments
y — VHT-STF time-domain waveform
matrix

 wlanVHTSTF

1-465

“VHT-STF” on page 1-466 time-domain waveform, returned as an NS-by-NT matrix. NS is
the number of time-domain samples, and NT is the number of transmit antennas.

NS is proportional to the channel bandwidth.

ChannelBandwidth NS
'CBW20' 80
'CBW40' 160
'CBW80' 320
'CBW160' 640

See “VHT-STF Processing” on page 1-467 for waveform generation details.
Data Types: double
Complex Number Support: Yes

Definitions

VHT-STF
The very high throughput short training field (VHT-STF) is a single OFDM symbol (4 μs in
length) that is used to improve automatic gain control estimation in a MIMO
transmission. It is located between the VHT-SIG-A and VHT-LTF portions of the VHT
packet.

The frequency domain sequence used to construct the VHT-STF for a 20 MHz
transmission is identical to the L-STF sequence. Duplicate L-STF sequences are frequency
shifted and phase rotated to support VHT transmissions for the 40 MHz, 80 MHz, and 160
MHz channel bandwidths. As such, the L-STF and HT-STF are subsets of the VHT-STF.

1 Functions — Alphabetical List

1-466

The VHT-STF is defined in IEEE Std 802.11ac-2013, Section 22.3.8.3.4.

Algorithms

VHT-STF Processing
The “VHT-STF” on page 1-466 is one OFDM symbol long and is processed for improved
gain control in MIMO configurations. For algorithm details, refer to IEEE Std
802.11ac-2013 [1], Section 22.3.4.6.

References
[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanLSTF | wlanVHTConfig | wlanVHTLTF | wlanVHTSIGA

Introduced in R2015b

 wlanVHTSTF

1-467

wlanWaveformGenerator
Generate WLAN waveform

Syntax
waveform = wlanWaveformGenerator(bits,cfgFormat)
waveform = wlanWaveformGenerator(bits,cfgFormat,Name,Value)

Description
waveform = wlanWaveformGenerator(bits,cfgFormat) generates a waveform for
the specified information bits, and format configuration. For more information, see “IEEE
802.11 PPDU Format” on page 1-475.

waveform = wlanWaveformGenerator(bits,cfgFormat,Name,Value) overrides
default generator configuration values using one or more Name,Value pair arguments.

Examples

Generate VHT Waveform

Generate a time-domain signal for an 802.11ac VHT transmission with one packet.

Create the format configuration object, vht. Assign two transmit antennas and two
spatial streams, and disable STBC. Set the MCS to 1, which assigns QPSK modulation and
a 1/2 rate coding scheme per the 802.11 standard. Set the number of bytes in the A-
MPDU pre-EOF padding, APEPLength, to 1024.

vht = wlanVHTConfig;
vht.NumTransmitAntennas = 2;
vht.NumSpaceTimeStreams = 2;
vht.STBC = false;
vht.MCS = 1;
vht.APEPLength = 1024;

1 Functions — Alphabetical List

1-468

Generate the transmission waveform.

bits = [1;0;0;1];
txWaveform = wlanWaveformGenerator(bits,vht);

Generate VHT Waveform with Random Scrambler State

Configure wlanWaveformGenerator to produce a time-domain signal for an 802.11ac
VHT transmission with five packets and a 30 microsecond idle period between packet.
Use a random scrambler initial state for each packet.

Create a VHT configuration object and confirm the channel bandwidth for scaling the x-
axis of the plot.

vht = wlanVHTConfig;
vht.ChannelBandwidth

ans =
'CBW80'

Generate and plot the waveform. Display the time in microseconds on the x-axis.

numPkts = 5;
scramInit = randi([1 127],numPkts,1);
txWaveform = wlanWaveformGenerator([1;0;0;1],vht,'NumPackets',numPkts,'IdleTime',30e-6,'ScramblerInitialization',scramInit);
time = [0:length(txWaveform)-1]/80e-6;
plot(time,abs(txWaveform))
xlabel ('Time (microseconds)')
ylabel('Amplitude')

 wlanWaveformGenerator

1-469

Five packets separated by 30 microsecond idle periods.

Input Arguments
bits — Information bits
0 | 1 | vector | cell array | vector cell array

Information bits for a single user, including any MAC padding representing multiple
concatenated PSDUs, specified as a binary vector stream. Internally, the input bits
vector is looped as required to generate the specified number of packets. The property
cfgFormat.PSDULength specifies the number of data bits taken from the bit stream for

1 Functions — Alphabetical List

1-470

each transmission packet generated. The property NumPackets specifies the number of
packets to generate.

• When bits is a cell array, each element of the cell array must be a double or int8
typed binary vector.

• When bits is a vector or scalar cell array, the specified bits apply to all users.
• When bits is a vector cell array, each element applies to each user correspondingly.

For each user, if the number of bits required across all packets of the generation
exceeds the length of the vector provided, the applied bit vector is looped. Looping on
the bits allows you to define a short pattern, for example. [1;0;0;1], that is repeated
as the input to the PSDU coding across packets and users. In each packet generation,
for the ith user, the ith element of the cfgFormat.PSDULength indicates the number
of data bytes taken from its stream. Multiple PSDULength by eight to compute the
number of bits

Example: [1 1 0 1 0 1 1]
Data Types: double | int8

cfgFormat — Packet format configuration
wlanDMGConfig object | wlanS1GConfig object | wlanVHTConfig object |
wlanHTConfig object | wlanNonHTConfig object

Packet format configuration, specified as a wlanDMGConfig, wlanS1GConfig,
wlanVHTConfig, wlanHTConfig, or wlanNonHTConfig object. The type of cfgFormat
object determines the IEEE 802.11 format of the generated waveform. For a description
of the properties and valid settings for the various packet format configuration objects,
see:

• wlanDMGConfig
• wlanS1GConfig
• wlanVHTConfig
• wlanHTConfig
• wlanNonHTConfig

The data rate and PSDU length of generated PPDUs is determined based on the
properties of the packet format configuration object.

Name,Value — Name-Value Pair Arguments
Name1,Value1,...,NameN,ValueN

 wlanWaveformGenerator

1-471

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: 'NumPackets',21,'ScramblerInitialization',[52,17]

NumPackets — Number of packets
1 (default) | positive integer

Number of packets to generate in a single function call, specified as a positive integer.
Data Types: double

IdleTime — Idle time added after each packet
0 (default) | nonnegative scalar

Idle time added after each packet, specified as a nonnegative scalar in seconds. The
default value is 0. If IdleTime is not set to the default value, it must be:

• ≥ 1e-06 seconds for DMG format
• ≥ 2e-06 seconds for VHT, HT-mixed, non-HT formats

Example: 20e-6
Data Types: double

ScramblerInitialization — Initial scrambler state
93 (default) | integer from 1 to 127 | matrix

Initial scrambler state of the data scrambler for each packet generated, specified as an
integer from 1 to 127, or as an NP-by-NUsers matrix of integers with values from 1 to 127.
NP is the number of packets, and NUsers is the number of users.

The default value of 93 is the example state given in IEEE Std 802.11-2012 [1], Section L.
1.5.2 and applies for S1G, VHT, HT, and Non-HT OFDM formats. For the DMG format,
specifying ScramblerInitialization with wlanWaveformGenerator overrides the
value specified by the wlanDMGConfig configuration object. For more information, see
“Scrambler Initialization” on page 1-487.

• When specified as a scalar, the same scrambler initialization value is used to generate
each packet for each user of a multipacket waveform.

1 Functions — Alphabetical List

1-472

• When specified as a matrix, each element represents an initial state of the scrambler
for packets in the multipacket waveform generated for each user. Each column
specifies the initial states for a single user, therefore up to four columns are
supported. If a single column is provided, the same initial states are used for all users.
Each row represents the initial state of each packet to generate. Therefore, a matrix
with multiple rows enables you to use a different initial state per packet, where the
first row contains the initial state of the first packet. If the number of packets to
generate exceeds the number of rows of the matrix provided, the rows are looped
internally.

Note ScramblerInitialization is not valid for non-HT DSSS.

Example: [3 56 120]
Data Types: double | int8

WindowTransitionTime — Duration of the window transition
nonnegative scalar

Duration of the window transition applied to each OFDM symbol, specified in seconds as
a nonnegative scalar. No windowing is applied if WindowTransitionTime = 0. The
default and maximum value permitted is shown for the various formats, type of guard
interval, and channel bandwidth.

 Maximum Permitted WindowTransitionTime (seconds)
DMG S1G VHT HT-mixed non-HT
2640
MHz

1, 2, 4, 8,
or 16
MHz

20, 40,
80, or
160 MHz

20 or 40
MHz

20 MHz 10 MHz 5 MHz

Default 6.0606e-0
9

(=
16/2640e6

)

1.0e-07 1.0e-07 1.0e-07 1.0e-07 1.0e-07 1.0e-07

 wlanWaveformGenerator

1-473

 Maximum Permitted WindowTransitionTime (seconds)
DMG S1G VHT HT-mixed non-HT
2640
MHz

1, 2, 4, 8,
or 16
MHz

20, 40,
80, or
160 MHz

20 or 40
MHz

20 MHz 10 MHz 5 MHz

Maximum 9.6969e-0
8

(=
256/2640e

6)

– – – – – –

Maximum
Permitted
for Long
Guard
Interval

– 1.6e-05 1.6e-06 1.6e-06 1.6e-06 3.2e-06 6.4e-06

Maximum
Permitted
for Short
Guard
Interval

– 8.0e-06 8.0e-07 8.0e-07 – – –

Data Types: double

Output Arguments
waveform — Packetized waveform
matrix

Packetized waveform, returned as an NS-by-NT matrix. NS is the number of time-domain
samples, and NT is the number of transmit antennas. waveform contains one or more
packets of the same “IEEE 802.11 PPDU Format” on page 1-475. Each packet can contain
different information bits. Waveform packet windowing is enabled by setting
WindowTransitionTime > 0. Windowing is enabled by default.

For more information, see “Waveform Sampling Rate” on page 1-481, “OFDM Symbol
Windowing” on page 1-482, and “Waveform Looping” on page 1-485.

1 Functions — Alphabetical List

1-474

Data Types: double
Complex Number Support: Yes

Definitions

IEEE 802.11 PPDU Format
IEEE 802.113132 PPDU formats defined for transmission include VHT, HT, non-HT, S1G,
and DMG. For all formats, the PPDU field structure includes preamble and data portions.
The DMG format PPDU contains a header field and optional training fields.

VHT, HT-Mixed, and Non-HT Format PPDU Field Structures

31. IEEE Std 802.11ac-2013 Adapted and reprinted with permission from IEEE. Copyright IEEE 2013. All
rights reserved.

32. IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights
reserved.

 wlanWaveformGenerator

1-475

Subcarrier duration varies with channel bandwidth for the legacy preamble fields.

Channel Bandwidth
(MHz)

Preamble Field Duration
TSHORT: L-STF
Duration

TLONG: L-LTF
Duration

TSIGNAL: Duration of
the L-SIG Symbol

20, 40, 80, 160 8 μs 8 μs 4 μs
10 16 μs 16 μs 8 μs
5 32 μs 32 μs 16 μs

S1G Format PPDU Field Structure

In S1G, there are three transmission modes:

• ≥2-MHz long preamble mode

1 Functions — Alphabetical List

1-476

• ≥2-MHz short preamble mode
• 1-MHz mode

Each transmission mode has a specific PPDU preamble structure:

• An S1G ≥2-MHz long preamble mode PPDU supports single-user and multi-user
transmissions. The long preamble PPDU consists of two portions; the omni-directional
portion and the beam-changeable portion.

• The omni-directional portion is transmitted to all users without beamforming. It
consists of three fields:

• The short training field (STF) is used for coarse synchronization.
• The long training field (LTF1) is used for fine synchronization and initial channel

estimation.
• The signal A field (SIG-A) is decoded by the receiver to determine transmission

parameters relevant to all users.
• The data portion can be beamformed to each user. It consists of four fields:

• The beamformed short training field (D-STF) is used by the receiver for
automatic gain control.

• The beamformed long training fields (D-LTF-N) are used for MIMO channel
estimation.

• The signal B field (SIG-B) in a multi-user transmission, signals the MCS for each
user. In a single-user transmission, the MCS is signaled in the SIG-A field of the
omni-directional portion of the preamble. Therefore, in a single-user

 wlanWaveformGenerator

1-477

transmission the SIG-B symbol transmitted is an exact repetition of the first D-
LTF. This repetition allows for improved channel estimation.

• The data field is variable in length. It carries the user data payload.
• An S1G ≥2-MHz short preamble mode PPDU supports single-user transmissions. All
fields in the PPDU can be beamformed.

The PPDU consists of these five fields:

• The short training field (STF) is used for coarse synchronization.
• The first long training field (LTF1) is used for fine synchronization and initial

channel estimation.
• The signaling field (SIG) is decoded by the receiver to determine transmission

parameters.
• The subsequent long training fields (LTF2-N) are used for MIMO channel

estimation. NSYMBOLS = 1 per subsequent LTF
• The data field is variable in length. It carries the user data payload.

• An S1G 1-MHz mode PPDU supports single-user transmissions. It is composed of the
same five fields as the S1G ≥2-MHz short preamble mode PPDU and all fields can be
beamformed. An S1G 1-MHz mode PPDU has longer STF, LTF1, and SIG fields so this
narrower bandwidth mode can achieve sensitivity that is similar to the S1G ≥2-MHz
short preamble mode transmissions.

1 Functions — Alphabetical List

1-478

DMG Format PPDU Field Structure

In DMG, there are three physical layer (PHY) modulation schemes supported: control,
single carrier, and OFDM.

 wlanWaveformGenerator

1-479

The single-carrier chip timing, TC = 1/FC = 0.57 ns. For more information, see “Waveform
Sampling Rate” on page 1-481.

The supported DMG format PPDU field structures each contain these fields:

• The preamble contains a short training field (STF) and channel estimation field (CEF).
The preamble is used for packet detection, AGC, frequency offset estimation,
synchronization, indication of modulation type (Control, SC, or OFDM), and channel
estimation. The format of the preamble is common to the Control, SC, and OFDM PHY
packets.

• The STF is composed of Golay Ga sequences as specified in 802.11ad-2012 [2],
Section 21.3.6.2.

• The CEF is composed of Golay Gu and Gv sequences as specified in 802.11ad-2012
[2], Section 21.3.6.3.

1 Functions — Alphabetical List

1-480

• When the header and data fields of the packet are modulated using a single
carrier (control PHY and SC PHY), the Golay sequencing for the CEF waveform
is shown in 802.11ad-2012 [2], Figure 21-5.

• When the header and data fields of the packet are modulated using OFDM
(OFDM PHY), the Golay sequencing for the CEF waveform is shown in
802.11ad-2012 [2], Figure 21-6.

• The header field is decoded by the receiver to determine transmission parameters.
• The data field is variable in length. It carries the user data payload.
• The training fields (AGC and TRN-R/T subfields) are optional. They can be included to
refine beamforming.

IEEE 802.11ad-2012 [2] specifies the common aspects of the DMG PPDU packet structure
in Section 21.3. The PHY modulation-specific aspects of the packet structure are specified
in these sections:

• The DMG control PHY packet structure is specified in Section 21.4.
• The DMG OFDM PHY packet structure is specified in Section 21.5.
• The DMG SC PHY packet structure is specified in Section 21.6.

Waveform Sampling Rate
At the output of wlanWaveformGenerator, the generated waveform has a sampling rate
equal to the channel bandwidth.

For all VHT, HT, and non-HT format OFDM modulation, the channel bandwidth is
configured via the ChannelBandwidth property of the format configuration object.

For the DMG format modulation schemes, the channel bandwidth is always 2640 MHz
and the channel spacing is always 2160 MHz These values are specified in IEEE
802.11ad-2012 [2], Section 21.3.4 and Annex E-1, respectively.

For the non-HT format DSSS modulation scheme, the chipping rate is always 11 MHz, as
specified in IEEE 802.11-2012[1], Section 17.1.1.

This table indicates the waveform sampling rates associated with standard channel
spacing for each configuration format prior to filtering.

 wlanWaveformGenerator

1-481

Configuration
Object Modulation ChannelBandwi

dth
Channel
Spacing (MHz)

Sampling Rate
(MHz)
(FS, FC)

wlanDMGConfig

Control PHY For DMG, the
channel
bandwidth is
fixed at 2640
MHz.

2160

FC = ⅔ FS = 176
0SC

OFDM FS = 2640

wlanS1GConfig OFDM

'CBW1' 1 FS = 1
'CBW2' 2 FS = 2
'CBW4' 4 FS = 4
'CBW8' 8 FS = 8
'CBW16' 16 FS = 16

wlanVHTConfig OFDM

'CBW20' 20 FS = 20
'CBW40' 40 FS = 40
'CBW80' 80 FS = 80
'CBW160' 160 FS = 160

wlanHTConfig OFDM
'CBW20' 20 FS = 20
'CBW40' 40 FS = 40

wlanNonHTConf
ig

DSSS/CCK Not applicable 11 FC = 11

OFDM
'CBW5' 5 FS = 5
'CBW10' 10 FS = 10
'CBW20' 20 FS = 20

FS is the OFDM sampling rate.

FC is the chip rate for single carrier, control PHY, and DSSS/CCK modulations.

OFDM Symbol Windowing
OFDM naturally lends itself to processing with Fourier transforms. A negative side effect
of using an IFFT to process OFDM symbols is the resulting symbol-edge discontinuities.
These discontinuities cause out-of-band emissions in the transition region between
consecutive OFDM symbols. To smooth the discontinuity between symbols and reduce the

1 Functions — Alphabetical List

1-482

intersymbol out-of-band emissions, you can use the wlanWaveformGenerator function
to apply OFDM symbol windowing. To apply windowing, set WindowTransitionTime to
greater than zero.

When windowing is applied, transition regions are added to the leading and trailing edge
of the OFDM symbol by the wlanWaveformGenerator. Windowing extends the length of
the OFDM symbol by WindowTransitionTime (TTR).

The extended waveform is windowed by pointwise multiplication in the time domain,
using the windowing function specified in IEEE Std 802.11-2012 [1], Section 18.3.2.5:

w t

t

T

T
t

T

T
T

TR

TR TR

TR()

sin .

=

+
Ê

Ë
Á

ˆ

¯
˜

Ê

Ë
ÁÁ

ˆ

¯
˜̃ - < <Ê

ËÁ
ˆ
¯̃

<

2

2
0 5

2 2

1
2

p

tt T
T

t T

T
T

T
t T

T

< -Ê
ËÁ

ˆ
¯̃

-
-Ê

Ë
Á

ˆ

¯
˜

Ê

Ë
ÁÁ

ˆ

¯
˜̃ - < < +

TR

TR

TR T

2

0 5
2

2

2
sin .p RR

2
Ê
Ë
Á

ˆ
¯
˜

Ï

Ì

Ô
Ô
ÔÔ

Ó

Ô
Ô
Ô
Ô

The windowing function applies over the leading and trailing portion of the OFDM
symbol:

• –TTR/2 to TTR/2
• –T – TTR/2 to T + TTR/2

 wlanWaveformGenerator

1-483

After windowing is applied to each symbol, pointwise addition is used to combine the
overlapped regions between consecutive OFDM symbols. Specifically, the trailing
shoulder samples at the end of OFDM symbol 1 (T – TTR/2 to T + TTR/2) are added to the
leading shoulder samples at the beginning of OFDM symbol 2 (–TTR/2 to TTR/2).

Smoothing the overlap between consecutive OFDM symbols in this manner reduces the
out-of-band emissions. wlanWaveformGenerator applies OFDM symbol windowing
between:

• Each OFDM symbol within a packet
• Consecutive packets within the waveform, considering the IdleTime between packets
• The last and the first packet of the generated waveform

Windowing DMG Format Packets

For DMG format, windowing is only applicable to packets transmitted using the OFDM
PHY and is applied only to the OFDM modulated symbols. For OFDM PHY, only the
header and data symbols are OFDM modulated. The preamble (STF and CEF) and the
training fields are single carrier modulated and are not windowed. Similar to the out of
band emissions experienced by consecutive OFDM symbols, as shown here the CEF and
the first training subfield are subject to a nominal amount out of band emissions from the
adjacent windowed OFDM symbol.

1 Functions — Alphabetical List

1-484

For more information on how wlanWaveformGenerator handles windowing for the
consecutive packet IdleTime and for the last waveform packet, see “Waveform Looping”
on page 1-485.

Waveform Looping
To produce a continuous input stream, you can have your code loop on a waveform from
the last packet back to the first packet.

Applying windowing to the last and first OFDM symbols of the generated waveform
smooths the transition between the last and first packet of the waveform. When
WindowTransitionTime is greater than zero, wlanWaveformGenerator applies
“OFDM Symbol Windowing” on page 1-482.

 wlanWaveformGenerator

1-485

When looping a waveform, the last symbol of packet_N is followed by the first OFDM
symbol of packet_1. If the waveform has only one packet, the waveform loops from the
last OFDM symbol of the packet to the first OFDM symbol of the same packet.

When windowing is applied to the last OFDM symbol of a packet and the first OFDM of
the next packet, the idle time between the packets factors into the windowing applied.
Specify the idle time using the IdleTime property of wlanWaveformGenerator.

• If IdleTime is zero, “OFDM Symbol Windowing” on page 1-482 is applied as it would
be for consecutive OFDM symbols within a packet.

• If the IdleTime is nonzero, the extended windowed portion of the first OFDM symbol
in packet_1 (from –TTR/2 to 0–TS), is included at the end of the waveform. This
extended windowed portion is applied for looping when computing the “OFDM Symbol
Windowing” on page 1-482 between the last OFDM symbol of packet_N and the first
OFDM symbol of packet_1. TS is the sample time.

Looping DMG Format Waveforms

For DMG format waveforms there are three looping scenarios,

• The looping behavior for a waveform composed of DMG OFDM-PHY packets with no
training subfields is similar to the general case outlined in “Waveform Looping” on
page 1-485 but the first symbol of the waveform (and each packet) is not windowed.

• If IdleTime is zero for the waveform, the windowed portion (from T to T + TTR/2)
of the last data symbols is added to the start of the STF field.

• If IdleTime is non-zero for the waveform, the IdleTime is appended at the end of
the windowed portion (after T + TTR/2) of the last OFDM symbol.

1 Functions — Alphabetical List

1-486

• When a waveform composed of DMG OFDM-PHY packets includes training subfields,
no windowing is applied to the single carrier modulated symbols the end of the
waveform. The last sample of the last training subfield is followed by the first STF
sample of the first packet in the waveform.

• If IdleTime is zero for the waveform, there is no overlap.
• If IdleTime is nonzero for the waveform, the value specifies the delay between the

last sample of packet_N and the first sample of in packet_1.
• When a waveform is composed of DMG-SC or DMG-Control PHY packets, the end of

the waveform is single carrier modulated, so no windowing is applied to the last
waveform symbol. The last sample of the last training subfield is followed by the first
STF sample of the first packet in the waveform.

• If IdleTime is zero for the waveform, there is no overlap.
• If IdleTime is nonzero for the waveform, the value specifies the delay between the

last sample of packet_N and the first sample of in packet_1.

Note The same looping behavior applies for a waveform composed of DMG OFDM-
PHY packets with training subfields, DMG-SC PHY packets, or DMG-Control PHY
packets.

Scrambler Initialization
The scrambler initialization used on the transmission data follows the process described
in IEEE Std 802.11-2012, Section 18.3.5.5 and IEEE Std 802.11ad-2012, Section 21.3.9.
The header and data fields that follow the scrambler initialization field (including data
padding bits) are scrambled by XORing each bit with a length-127 periodic sequence
generated by the polynomial S(x) = x7+x4+1. The octets of the PSDU (Physical Layer
Service Data Unit) are placed into a bit stream, and within each octet, bit 0 (LSB) is first
and bit 7 (MSB) is last. The generation of the sequence and the XOR operation are shown
in this figure:

 wlanWaveformGenerator

1-487

Conversion from integer to bits uses left-MSB orientation. For the initialization of the
scrambler with decimal 1, the bits are mapped to the elements shown.

Element X7 X6 X5 X4 X3 X2 X1

Bit Value 0 0 0 0 0 0 1

To generate the bit stream equivalent to a decimal, use de2bi. For example, for decimal
1:

de2bi(1,7,'left-msb')
ans =

 0 0 0 0 0 0 1

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

1 Functions — Alphabetical List

1-488

[2] IEEE Std 802.11ad™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

See Also
wlanDMGConfig | wlanHTConfig | wlanNonHTConfig | wlanS1GConfig |
wlanVHTConfig

Topics
“Packet Size and Duration Dependencies”

Introduced in R2015b

 wlanWaveformGenerator

1-489

Classes — Alphabetical List

2

wlanDMGConfig Properties
Define parameter values for DMG format packet

Description
The wlanDMGConfig object specifies the transmission properties for the IEEE 802.11
directional multi-gigabit (DMG) format physical layer (PHY) packet.

After you create an object, use dot notation to change or access the object parameters.
For example:

Create a wlanDMGConfig object. Then modify the default setting for the MCS property.

cfgDMG = wlanDMGConfig;
cfgDMG.MCS = 9;

Properties
DMG Format Configuration

MCS — Modulation and coding scheme index
0 (default) | integer from 0 to 24 | '9.1' | '12.1' | '12.2' | '12.3' | '12.4' | '12.5'
| '12.6'

Modulation and coding scheme index, specified as an integer from 0 to 24 or one of the
extended MCS indices: '9.1', '12.1', '12.2', '12.3', '12.4','12.5' or '12.6'.
An extended (non-integer) MCS index can only be specified as a character vector or string
scalar. An integer MCS index can be specified as a character vector, string scalar, or
integer. The MCS index indicates the modulation and coding scheme used in transmitting
the current packet.

• Modulation and coding scheme for control PHY

2 Classes — Alphabetical List

2-2

MCS Index Modulation Coding Rate Comment

0 DBPSK 1/2
Code rate and data
rate might be lower
due to codeword
shortening.

• Modulation and coding schemes for single-carrier modulation

MCS Index Modulation Coding Rate NCBPS Repetition
1

π/2 BPSK

1/2

1

2
2 1/2

1

3 5/8
4 3/4
5 13/16
6

π/2 QPSK

1/2

2
7 5/8
8 3/4
9 13/16

9.1 7/8
10

π/2 16QAM

1/2

4
11 5/8
12 3/4

12.1 3/4
12.2 7/8
12.3

64QAM

5/8

6
12.4 3/4
12.5 13/16
12.6 7/8

NCBPS is the number of coded bits per symbol.

• Modulation and coding schemes for OFDM modulation

 wlanDMGConfig Properties

2-3

MCS Index Modulation Coding Rate NBPSC NCBPS NDBPS

13
SQPSK

1/2
1 336

168
14 5/8 210
15

QPSK
1/2

2 672
336

16 5/8 420
17 3/4 504
18

16QAM

1/2

4 1344

672
19 5/8 840
20 3/4 1008
21 13/16 1092
22

64QAM
5/8

6 2016
1260

23 3/4 1512
24 13/16 1638

NBPSC is the number of coded bits per single carrier.

NCBPS is the number of coded bits per symbol.

NDBPS is the number of data bits per symbol.

Data Types: double | char | string

TrainingLength — Number of training fields
0 (default) | integer from 0 to 64

Number of training fields, specified as an integer from 0 to 64. TrainingLength must be
a multiple of four.
Data Types: double

PacketType — Packet training field type
'TRN-R' (default) | 'TRN-T'

Packet training field type, specified as 'TRN-R' or 'TRN-T'. This property applies when
TrainingLength > 0.

'TRN-R' indicates that the packet includes or requests receive-training subfields and
'TRN-T' indicates that the packet includes transmit-training subfields.

2 Classes — Alphabetical List

2-4

Data Types: char | string

BeamTrackingRequest — Request beam tracking
false (default) | true

Request beam tracking, specified as a logical. Setting BeamTrackingRequest to true
indicates that beam tracking is requested. This property applies when
TrainingLength > 0.
Data Types: logical

TonePairingType — Tone pairing type
'Static' (default) | 'Dynamic'

Tone pairing type, specified as 'Static' or 'Dynamic'. This property applies when MCS
is from 13 to 17. Specifically, TonePairingType applies when using OFDM and either
SQPSK or QPSK modulation.
Data Types: char | string

DTPGroupPairIndex — DTP group pair index
42-by-1 integer vector

DTP group pair index, specified as a 42-by-1 integer vector for each pair. Element values
must be from 0 to 41, with no duplicates. This property applies when MCS is from 13 to 17
and when TonePairingType is 'Dynamic'.
Data Types: double

DTPIndicator — DTP update indicator
false (default) | true

DTP update indicator, specified as a logical. Toggle DTPIndicator between packets to
indicate that the dynamic tone pair mapping has been updated. This property applies
when MCS is from 13 to 17 and when TonePairingType is 'Dynamic'.
Data Types: logical

PSDULength — Number of bytes carried in the user payload
1000 (default) | integer from 1 to 262,143

Number of bytes carried in the user payload, specified as an integer from 1 to 262,143.
Data Types: double

 wlanDMGConfig Properties

2-5

ScramblerInitialization — Initial scrambler state
2 (default) | integer from 1 to 127

Initial scrambler state of the data scrambler for each packet generated, specified as an
integer depending on the value of MCS:

• If MCS is 0, the initial scrambler state is limited to values from 1 to 15, corresponding
to a 4-by-1 column vector..

• If MCS is '9.1', '12.1', '12.2', '12.3', '12.4', '12.5' or '12.6', the valid
range of the initial scrambler is from 0 to 31, corresponding to a 5-by-1 column vector.

• For the remaining MCS values, the valid range is from 1 to 127, corresponding to a 7-
by-1 column vector.

The default value of 2 is the example state given in IEEE Std 802.11-2012, Amendment 3,
Section L.5.2.
Data Types: double | int8

AggregatedMPDU — MPDU aggregation indicator
false (default) | true

MPDU aggregation indicator, specified as a logical. Setting AggregatedMPDU to true
indicates that the current packet uses A-MPDU aggregation.
Data Types: logical

LastRSSI — Received power level of the last packet
0 (default) | integer from 0 to 15

Received power level of the last packet, specified as an integer from 0 to 15.

When transmitting a response frame immediately following a short interframe space
(SIFS) period, a DMG STA sets the LastRSSI as specified in IEEE 802.11ad-2012,
Section 9.3.2.3.3, to map to the TXVECTOR parameter LAST_RSSI of the response frame
to the power that was measured on the received packet, as reported in the RCPI field of
the frame that elicited the response frame. The encoding of the value for TXVECTOR is as
follows:

• Power values equal to or above –42 dBm are represented as the value 15.
• Power values between –68 dBm and –42 dBm are represented as round((power – (–71

dBm))/2).

2 Classes — Alphabetical List

2-6

• Power values less than or equal to –68 dBm are represented as the value of 1.
• For all other cases, the DMG STA shall set the TXVECTOR parameter LAST_RSSI of

the transmitted frame to 0.

The LAST_RSSI parameter in RXVECTOR maps to LastRSSI and indicates the value of
the LAST_RSSI field from the PCLP header of the received packet. The encoding of the
value for RXVECTOR is as follows:

• A value of 15 represents power greater than or equal to –42 dBm.
• Values from 2 to 14 represent power levels (–71+value×2) dBm.
• A value of 1 represents power less than or equal to –68 dBm.
• A value of 0 indicates that the previous packet was not received during the SIFS

period before the current transmission.

For more information, see IEEE 802.11ad-2012, Section 21.2.
Data Types: double

Turnaround — Turnaround indication
false (default) | true

Turnaround indication, specified as a logical. Setting Turnaround to true indicates that
the STA is required to listen for an incoming PPDU immediately following the
transmission of the PPDU. For more information, see IEEE 802.11ad-2012, Section
9.3.2.3.3.
Data Types: logical

References
[1] IEEE Std 802.11ad™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band.

See Also
wlanDMGConfig | wlanWaveformGenerator

 wlanDMGConfig Properties

2-7

Introduced in R2017a

2 Classes — Alphabetical List

2-8

wlanHTConfig Properties
Define parameter values for HT format packet

Description
The wlanHTConfig object specifies the transmission properties for the IEEE 802.11 high
throughput (HT) format physical layer (PHY) packet.

After you create an object, use dot notation to change or access the object parameters.
For example:

Create a wlanHTConfig object. Then modify the default setting for the
NumTransmitAntennas property.

cfgHT = wlanHTConfig;
cfgHT.numTransmitAntennas = 2;

Properties
HT Format Configuration

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW40'

Channel bandwidth in MHz, specified as 'CBW20' or 'CBW40'.
Data Types: char | string

NumTransmitAntennas — Number of transmit antennas
1 (default) | 2 | 3 | 4

Number of transmit antennas, specified as 1, 2, 3, or 4.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | 2 | 3 | 4

 wlanHTConfig Properties

2-9

Number of space-time streams in the transmission, specified as 1, 2, 3, or 4.
Data Types: double

NumExtensionStreams — Number of extension spatial streams
0 (default) | 1 | 2 | 3

Number of extension spatial streams in the transmission, specified as 0, 1, 2, or 3. When
NumExtensionStreams is greater than 0, SpatialMapping must be 'Custom'.
Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value 'Direct', applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.
Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
rotate and scale the constellation mapper output vector. This property applies when the
SpatialMapping property is set to 'Custom'. The spatial mapping matrix is used for
beamforming and mixing space-time streams over the transmit antennas.

• When specified as a scalar, NumTransmitAntennas = NumSpaceTimeStreams = 1
and a constant value applies to all the subcarriers.

• When specified as a matrix, the size must be (NSTS + NESS)-by-NT. NSTS is the number
of space-time streams. NESS is the number of extension spatial streams. NT is the
number of transmit antennas. The spatial mapping matrix applies to all the
subcarriers. The first NSTS and last NESS rows apply to the space-time streams and
extension spatial streams respectively.

• When specified as a 3-D array, the size must be NST-by-(NSTS + NESS)-by-NT. NST is the
sum of the data and pilot subcarriers, as determined by ChannelBandwidth. NSTS is
the number of space-time streams. NESS is the number of extension spatial streams. NT
is the number of transmit antennas. In this case, each data and pilot subcarrier can
have its own spatial mapping matrix.

The table shows the ChannelBandwidth setting and the corresponding NST.

2 Classes — Alphabetical List

2-10

ChannelBandwidth NST

'CBW20' 56
'CBW40' 114

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3; 0.4 0.4; 0.5 0.8] represents a spatial mapping matrix having
three space-time streams and two transmit antennas.
Data Types: double
Complex Number Support: Yes

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 31

Modulation and coding scheme to use for transmitting the current packet, specified as an
integer from 0 to 31. The MCS setting identifies which modulation and coding rate
combination is used, and the number of spatial streams (NSS).

MCS(Note 1) NSS(Note 1) Modulation Coding Rate
0, 8, 16, or 24 1, 2, 3, or 4 BPSK 1/2
1, 9, 17, or 25 1, 2, 3, or 4 QPSK 1/2
2, 10, 18, or 26 1, 2, 3, or 4 QPSK 3/4
3, 11, 19, or 27 1, 2, 3, or 4 16QAM 1/2
4, 12, 20, or 28 1, 2, 3, or 4 16QAM 3/4
5, 13, 21, or 29 1, 2, 3, or 4 64QAM 2/3
6, 14, 22, or 30 1, 2, 3, or 4 64QAM 3/4
7, 15, 23, or 31 1, 2, 3, or 4 64QAM 5/6
Note-1 MCS from 0 to 7 have one spatial stream. MCS from 8 to 15 have two spatial
streams. MCS from 16 to 23 have three spatial streams. MCS from 24 to 31 have four
spatial streams.

See IEEE 802.11-2012, Section 20.6 for further description of MCS dependent
parameters.

When working with the HT-Data field, if the number of space-time streams is equal to the
number of spatial streams, no space-time block coding (STBC) is used. See IEEE
802.11-2012, Section 20.3.11.9.2 for further description of STBC mapping.

 wlanHTConfig Properties

2-11

Example: 22 indicates an MCS with three spatial streams, 64-QAM modulation, and a 3/4
coding rate.
Data Types: double

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char | string

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default) or
'LDPC'. 'BCC' indicates binary convolutional coding, and 'LDPC' indicates low density
parity check coding.
Data Types: char | cell | string

PSDULength — Number of bytes carried in the user payload
1024 (default) | integer from 0 to 65,535

Number of bytes carried in the user payload, specified as an integer from 0 to 65,535. A
PSDULength of 0 implies a sounding packet for which there are no data bits to recover.
Example: 512
Data Types: double

RecommendSmoothing — Recommend smoothing for channel estimation
true (default) | false

Recommend smoothing for channel estimation, specified as a logical.

• If the frequency profile is nonvarying across the channel , the receiver sets this
property to true. In this case, frequency-domain smoothing is recommended as part
of channel estimation.

2 Classes — Alphabetical List

2-12

• If the frequency profile varies across the channel, the receiver sets this property to
false. In this case, frequency-domain smoothing is not recommended as part of
channel estimation.

Data Types: logical

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanHTConfig | wlanNonHTConfig | wlanVHTConfig | wlanWaveformGenerator

Introduced in R2015b

 wlanHTConfig Properties

2-13

wlanNonHTConfig Properties
Define parameter values for non-HT format packet

Description
The wlanNonHTConfig object specifies the transmission properties for the IEEE 802.11
non-high throughput (non-HT) format physical layer (PHY) packet.

After you create an object, use dot notation to change or access the object parameters.
For example:

Create a wlanNonHTConfig object. Then modify the default setting for the PSDULength
property.

cfgNonHT = wlanNonHTConfig;
cfgNonHT.PSDULength = 3025;

Properties
Non-HT Format Configuration

Modulation — Modulation type for non-HT transmission
'OFDM' (default) | 'DSSS'

Modulation type for the non-HT transmission packet, specified as 'OFDM' or 'DSSS'.
Data Types: char | string

ChannelBandwidth — Channel bandwidth
'CBW20' (default) | 'CBW10' | 'CBW5'

Channel bandwidth in MHz for OFDM, specified as 'CBW20', 'CBW10', or 'CBW5'. The
default value of 'CBW20' sets the channel bandwidth to 20 MHz.

When channel bandwidth is 5 MHz or 10 MHz, only one transmit antenna is permitted
and NumTransmitAntennas is not applicable.
Data Types: char | string

2 Classes — Alphabetical List

2-14

MCS — OFDM modulation and coding scheme
0 (default) | integer from 0 to 7 | integer

OFDM modulation and coding scheme to use for transmitting the current packet,
specified as an integer from 0 to 7. The system configuration associated with an MCS
setting maps to the specified data rate.

MCS Modula
tion

Coding
Rate

Coded
bits per
subcarr

ier
(NBPSC)

Coded
bits per
OFDM
symbol
(NCBPS)

Data
bits per
OFDM
symbol
(NDBPS)

Data Rate (Mbps)
20 MHz
channel
bandwi

dth

10 MHz
channel
bandwi

dth

5 MHz
channel
bandwi

dth
0 BPSK 1/2 1 48 24 6 3 1.5
1 BPSK 3/4 1 48 36 9 4.5 2.25
2 QPSK 1/2 2 96 48 12 6 3
3 QPSK 3/4 2 96 72 18 9 4.5
4 16QAM 1/2 4 192 96 24 12 6
5 16QAM 3/4 4 192 144 36 18 9
6 64QAM 2/3 6 288 192 48 24 12
7 64QAM 3/4 6 288 216 54 27 13.5

See IEEE Std 802.11-2012, Table 18-4.
Data Types: double

DataRate — DSSS modulation data rate
'1Mbps' (default) | '2Mbps' | '5.5Mbps' | '11Mbps'

DSSS modulation data rate, specified as '1Mbps', '2Mbps', '5.5Mbps', or '11Mbps'.

• '1Mbps' uses differential binary phase shift keying (DBPSK) modulation with a 1
Mbps data rate.

• '2Mbps' uses differential quadrature phase shift keying (DQPSK) modulation with a 2
Mbps data rate.

• '5.5Mbps' uses complementary code keying (CCK) modulation with a 5.5 Mbps data
rate.

• '11Mbps' uses complementary code keying (CCK) modulation with an 11 Mbps data
rate.

 wlanNonHTConfig Properties

2-15

For IEEE Std 802.11-2012, Section 16, only '1Mbps' and '2Mbps' apply
Data Types: char | string

Preamble — DSSS modulation preamble type
'Long' (default) | 'Short'

DSSS modulation preamble type, specified as 'Long' or 'Short'.

• When DataRate is '1Mbps', the Preamble setting is ignored and 'Long' is used.
• When DataRate is greater than '1Mbps', the Preamble property is available and

can be set to 'Long' or 'Short'.

For IEEE Std 802.11-2012, Section 16, 'Short' does not apply.
Data Types: char | string

LockedClocks — Clock locking indication for DSSS modulation
true (default) | false

Clock locking indication for DSSS modulation, specified as a logical. Bit 2 of the SERVICE
field is the Locked Clock Bit. A true setting indicates that the PHY implementation
derives its transmit frequency clock and symbol clock from the same oscillator. For more
information, see IEEE Std 802.11-2012, Section 17.2.3.5 and Section 19.1.3.

Note

• IEEE Std 802.11-2012, Section 19.3.2.2, specifies locked clocks is required for all ERP
systems when transmitting at the ERP-PBCC rate or at a data rate described in Section
17. Therefore to model ERP systems, set LockedClocks to true.

Data Types: logical

PSDULength — Number of bytes carried in the user payload
1000 (default) | integer from 1 to 4095 | integer

Number of bytes carried in the user payload, specified as an integer from 1 to 4095.
Data Types: double

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

2 Classes — Alphabetical List

2-16

Number of transmit antennas for OFDM, specified as a scalar integer from 1 to 8.

When channel bandwidth is 5 MHz or 10 MHz, NumTransmitAntennas is not applicable
because only one transmit antenna is permitted.
Data Types: double

References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanLLTF | wlanLLTFChannelEstimate | wlanLLTFDemodulate | wlanLSIG |
wlanLSIGRecover | wlanLSTF | wlanNonHTConfig | wlanNonHTData |
wlanNonHTDataRecover | wlanWaveformGenerator

Introduced in R2015b

 wlanNonHTConfig Properties

2-17

wlanS1GConfig Properties
Define parameter values for S1G format packet

Description
The wlanS1GConfig object specifies the transmission properties for the IEEE 802.11 sub
1 GHz (S1G) format physical layer (PHY) packet.

After you create an object, use dot notation to change or access the object parameters.
For example:

Create a wlanS1GConfig object. Then modify the default setting for the
ChannelBandwidth property.

cfgS1G = wlanS1GConfig;
cfgS1G.ChannelBandwidth = 'CBW2';

Properties
S1G Format Configuration

ChannelBandwidth — Channel bandwidth
'CBW2' (default) | 'CBW1' | 'CBW4' | 'CBW8' | 'CBW16'

Channel bandwidth, specified as 'CBW1', 'CBW2', 'CBW4', 'CBW8', or 'CBW16'. If the
transmission has multiple users, the same channel bandwidth is applied to all users.
Example: 'CBW16' sets the channel bandwidth to 16 MHz.
Data Types: char | string

Preamble — Preamble type
'Short' (default) | 'Long'

Preamble type, specified as 'Short' or 'Long'. This property applies only when
ChannelBandwidth is not 'CBW1'.
Data Types: char | string

2 Classes — Alphabetical List

2-18

NumUsers — Number of users
1 (default) | 2 | 3 | 4

Number of users, specified as 1, 2, 3, or 4. (NUsers)
Data Types: double

UserPositions — Position of users
[0 1] (default) | row vector of integers from 0 to 3 in strictly increasing order

Position of users, specified as an integer row vector with length equal to NumUsers and
element values from 0 to 3 in a strictly increasing order. This property applies when
NumUsers > 1.
Example: [0 2 3] indicates positions for three users, where the first user occupies
position 0, the second user occupies position 2, and the third user occupies position 3.
Data Types: double

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 4

Number of transmit antennas, specified as a scalar integer from 1 to 4.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 4 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector. (Nsts)

• For a single user, the number of space-time streams is an integer scalar from 1 to 4.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of integers

from 1 to 4, where NUsers ≤ 4. The sum total of space-time streams for all users,
Nsts_Total, must not exceed four.

Example: [1 1 2] indicates number of space-time streams for three users, where the
first user gets 1 space-time stream, the second user gets 1 space-time stream, and the
third user gets 2 space-time streams. The total number of space-time streams assigned is
4.
Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

 wlanS1GConfig Properties

2-19

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.
Data Types: char | string

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
apply a beamforming steering matrix, and to rotate and scale the constellation mapper
output vector. If applicable, scale the space-time block coder output instead.
SpatialMappingMatrix applies when the SpatialMapping property is set to
'Custom'. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

• When specified as a scalar, a constant value applies to all the subcarriers.
• When specified as a matrix, the size must be NSTS_Total-by-NT. The spatial mapping

matrix applies to all the subcarriers. NSTS_Total is the sum of space-time streams for all
users, and NT is the number of transmit antennas.

• When specified as a 3-D array, the size must be NST-by-NSTS_Total-by-NT. NST is the sum
of the occupied data (NSD) and pilot (NSP) subcarriers, as determined by
ChannelBandwidth. NSTS_Total is the sum of space-time streams for all users. NT is the
number of transmit antennas.

NST increases with channel bandwidth.

ChannelBandwidt
h

Number of
Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW1' 26 24 2
'CBW2' 56 52 4
'CBW4' 114 108 6
'CBW8' 242 234 8
'CBW16' 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.

2 Classes — Alphabetical List

2-20

Data Types: double
Complex Number Support: Yes

Beamforming — Enable beamforming in a long preamble packet
true (default) | false

Enable beamforming in a long preamble packet, specified as a logical. Beamforming is
performed when this setting is true. This property applies for a long preamble
(Preamble = 'Long') with NumUsers = 1 and SpatialMapping = 'Custom'. The
SpatialMappingMatrix property specifies the beamforming steering matrix.
Data Types: logical

STBC — Enable space-time block coding
false (default) | true

Enable space-time block coding (STBC) of the PPDU data field, specified as a logical.
STBC transmits multiple copies of the data stream across assigned antennas.

• When set to false, no STBC is applied to the data field, and the number of space-time
streams is equal to the number of spatial streams.

• When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

See IEEE 802.11ac-2013, Section 22.3.10.9.4 for further description.

Note STBC is relevant for single-user transmissions only.

Data Types: logical

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 10 | 1-by-NUsers vector of integers

Modulation and coding scheme used in transmitting the current packet, specified as a
scalar or vector.

• For a single user, the MCS value is a scalar integer from 0 to 10.
• For multiple users, MCS is a 1-by-NUsers vector of integers or a scalar with values from

0 to 10, where NUsers ≤ 4.

 wlanS1GConfig Properties

2-21

MCS Modulation Coding Rate Comment
0 BPSK 1/2
1 QPSK 1/2
2 QPSK 3/4
3 16QAM 1/2
4 16QAM 3/4
5 64QAM 2/3
6 64QAM 3/4
7 64QAM 5/6
8 256QAM 3/4
9 256QAM 5/6
10 BPSK 1/2 Applies only for

ChannelBandwidth
 = 'CBW1'

Data Types: double

ChannelCoding — Type of forward error correction coding
'BCC' (default)

This property is read-only.

Type of forward error correction coding for the data field, specified as 'BCC'. Only binary
convolutional coding is supported.
Data Types: char | cell

APEPLength — Number of bytes in the A-MPDU pre-EOF padding
256 (default) | integer from 0 to 65,535 | vector of integers

Number of bytes in the A-MPDU pre-EOF padding, specified as an integer scalar or
vector.

• For a single user, APEPLength is a scalar integer from 0 to 65,535.
• For multiple users, APEPLength is a 1-by-NUsers vector of integers or a scalar with

values from 0 to 65,535, where NUsers ≤ 4.

2 Classes — Alphabetical List

2-22

• APEPLength = 0 for a null data packet (NDP).

APEPLength is used internally to determine the number of OFDM symbols in the data
field.

Note Only aggregated data transmission is supported.

Data Types: double

PSDULength — Number of bytes carried in the user payload
integer | vector of integers

This property is read-only.

Number of bytes carried in the user payload, including the A-MPDU and any MAC
padding, specified as an integer scalar or vector. For a null data packet (NDP), the PSDU
length is zero.

• For a single user, the PSDU length is a scalar integer from 1 to 1,048,575.
• For multiple users, the PSDU length is a 1-by-NUsers vector of integers from 1 to

65,535, where NUsers ≤ 4.
• When undefined, PSDULength is returned as an empty of size 1×0. This can happen

when the set of property values for the object are in an invalid state.

PSDULength is calculated internally based on the APEPLength property and other
coding-related properties. It is accessible only by direct property call.

Example: [1031 2065] is the PSDU length vector for a wlanS1GConfig object with two
users, where the MCS for the first user is 4 and the MCS for the second user is 8.
Data Types: double

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

 wlanS1GConfig Properties

2-23

Note For S1G, the first OFDM symbol within the data field always has a long guard
interval, even when GuardInterval is set to 'Short'.

Data Types: char | string

GroupID — Group identification number
1 (default) | integer from 1 to 62

Group identification number, specified as an integer scalar from 1 to 62. The group
identification number is signaled during a multi-user transmission. Therefore this
property applies for a long preamble (Preamble = 'Long') and when NumUsers is
greater than 1.
Data Types: double

PartialAID — Abbreviated indication of the PSDU recipient
37 (default) | integer from 0 to 511

Abbreviated indication of the PSDU recipient, specified as an integer scalar from 0 to
511.

• For an uplink transmission, the partial identification number is the last nine bits of the
basic service set identifier (BSSID) and must be an integer from 0 to 511.

• For a downlink transmission, the partial identification of a client is an identifier that
combines the association ID with the BSSID of its serving AP and must be an integer
from 0 to 63.

For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

UplinkIndication — Enable uplink indication
false (default) | true

Enable uplink indication, specified as a logical. Set UplinkIndication to true for
uplink transmission or false for downlink transmission. This property applies when
ChannelBandwidth is not 'CBW1' and NumUsers = 1.
Data Types: logical

Color — Access point color identifier
0 (default) | integer scalar from 0 to 7

2 Classes — Alphabetical List

2-24

Access point (AP) color identifier, specified as an integer from 0 to 7. An AP includes a
Color number for the basic service set (BSS). An S1G station (STA) can use the Color
setting to determine if the transmission is within a BSS it is associated with. An S1G STA
can terminate the reception process for transmissions received from a BSS that it is not
associated with. This property applies when ChannelBandwidth is not 'CBW1',
NumUsers = 1, and UplinkIndication = false.
Data Types: double

TravelingPilots — Enable traveling pilots
false (default) | true

Enable traveling pilots, specified as a logical. Set TravelingPilots to true for
nonconstant pilot locations. Traveling pilots allow a receiver to track a changing channel
due to Doppler spread.
Data Types: logical

ResponseIndication — Response indication type
'None' (default) | 'NDP' | 'Normal' | 'Long'

Response indication type, specified as 'None', 'NDP', 'Normal', or 'Long'. This
information is used to indicate the presence and type of frame that will be sent a short
interframe space (SIFS) after the current frame transmission. The response indication
field is set based on the value of ResponseIndication and transmitted in;

• The SIG2 field of the S1G_SHORT preamble
• The SIG-A-2 field of the S1G_LONG preamble
• The SIG field of the S1G_1M preamble

Data Types: char | string

RecommendSmoothing — Recommend smoothing for channel estimation
true (default) | false

Recommend smoothing for channel estimation, specified as a logical.

• If the frequency profile is nonvarying across the channel , the receiver sets this
property to true. In this case, frequency-domain smoothing is recommended as part
of channel estimation.

 wlanS1GConfig Properties

2-25

• If the frequency profile varies across the channel, the receiver sets this property to
false. In this case, frequency-domain smoothing is not recommended as part of
channel estimation.

Data Types: logical

References
[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanHTConfig | wlanNonHTConfig | wlanS1GConfig | wlanVHTConfig |
wlanWaveformGenerator

Introduced in R2016b

2 Classes — Alphabetical List

2-26

wlanRecoveryConfig Properties
Define parameter values for data recovery

Description
The wlanRecoveryConfig object specifies properties for recovering data from IEEE
802.11 transmissions.

After you create an object, use dot notation to change or access the object parameters.
For example:

Create a wlanRecoveryConfig object. Then modify the default setting for the
OFDMSymbolOffset property.

cfgRec = wlanRecoveryConfig;
cfgRec.OFDMSymbolOffset = 0.65;

Properties
Date Recovery Configuration

OFDMSymbolOffset — OFDM symbol sampling offset
0.75 (default) | scalar value from 0 to 1

OFDM symbol sampling offset represented as a fraction of the cyclic prefix (CP) length,
specified as a scalar value from 0 to 1. This value indicates the start location for OFDM
demodulation, relative to the beginning of the cyclic prefix. OFDMSymbolOffset = 0
represents the start of the cyclic prefix and OFDMSymbolOffset = 1 represents the end
of the cyclic prefix.

 wlanRecoveryConfig Properties

2-27

Data Types: double

EqualizationMethod — Equalization method
'MMSE' (default) | 'ZF'

Equalization method, specified as 'MMSE' or 'ZF'.

• 'MMSE' indicates that the receiver uses a minimum mean square error equalizer.
• 'ZF' indicates that the receiver uses a zero-forcing equalizer.

Example: 'ZF'
Data Types: char | string

PilotPhaseTracking — Pilot phase tracking
'PreEQ' (default) | 'None'

Pilot phase tracking, specified as 'PreEQ' or 'None'.

• 'PreEQ' — Enables pilot phase tracking, which is performed before any equalization
operation.

• 'None' — Pilot phase tracking does not occur.

Data Types: char | string

MaximumLDPCIterationCount — Maximum number of decoding iterations in
LDPC
12 (default) | positive scalar integer

2 Classes — Alphabetical List

2-28

Maximum number of decoding iterations in LDPC, specified as a positive scalar integer.
This parameter is applicable when channel coding is set to LDPC. For information on
channel coding options, see wlanVHTConfig or wlanHTConfig for 802.11 format of
interest.
Data Types: double

EarlyTermination — Enable early termination of LDPC decoding
false (default) | true

Enable early termination of LDPC decoding, specified as a logical. This parameter is
applicable when channel coding is set to LDPC.

• When set to false, LDPC decoding completes the number of iterations specified by
MaximumLDPCIterationCount, regardless of parity check status.

• When set to true, LDPC decoding terminates when all parity-checks are satisfied.

For information on channel coding options, see wlanVHTConfig or wlanHTConfig for
802.11 format of interest.

See Also
wlanHTConfig | wlanNonHTConfig | wlanRecoveryConfig | wlanVHTConfig

Introduced in R2015b

 wlanRecoveryConfig Properties

2-29

wlanVHTConfig Properties
Define parameter values for VHT format packet

Description
The wlanVHTConfig object specifies the transmission properties for the IEEE 802.11
very high throughput (VHT) format physical layer (PHY) packet.

After you create an object, use dot notation to change or access the object parameters.
For example:

Create a wlanVHTConfig object. Then modify the default setting for the
ChannelBandwidth property.

cfgVHT = wlanVHTConfig;
cfgVHT.ChannelBandwidth = 'CBW20';

Properties
VHT Format Configuration

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. If the
transmission has multiple users, the same channel bandwidth is applied to all users. The
default value of 'CBW80' sets the channel bandwidth to 80 MHz.
Data Types: char | string

NumUsers — Number of users
1 (default) | 2 | 3 | 4

Number of users, specified as 1, 2, 3, or 4. (NUsers)
Data Types: double

2 Classes — Alphabetical List

2-30

UserPositions — Position of users
[0 1] (default) | row vector of integers from 0 to 3 in strictly increasing order

Position of users, specified as an integer row vector with length equal to NumUsers and
element values from 0 to 3 in a strictly increasing order. This property applies when
NumUsers > 1.
Example: [0 2 3] indicates positions for three users, where the first user occupies
position 0, the second user occupies position 2, and the third user occupies position 3.
Data Types: double

NumTransmitAntennas — Number of transmit antennas
1 (default) | integer from 1 to 8

Number of transmit antennas, specified as a scalar integer from 1 to 8.
Data Types: double

NumSpaceTimeStreams — Number of space-time streams
1 (default) | integer from 1 to 8 | 1-by-NUsers vector of integers from 1 to 4

Number of space-time streams in the transmission, specified as a scalar or vector.

• For a single user, the number of space-time streams is a scalar integer from 1 to 8.
• For multiple users, the number of space-time streams is a 1-by-NUsers vector of integers

from 1 to 4, where the vector length, NUsers, is an integer from 1 to 4.

Example: [1 3 2] is the number of space-time streams for each user.

Note The sum of the space-time stream vector elements must not exceed eight.

Data Types: double

SpatialMapping — Spatial mapping scheme
'Direct' (default) | 'Hadamard' | 'Fourier' | 'Custom'

Spatial mapping scheme, specified as 'Direct', 'Hadamard', 'Fourier', or
'Custom'. The default value of 'Direct' applies when NumTransmitAntennas and
NumSpaceTimeStreams are equal.
Data Types: char | string

 wlanVHTConfig Properties

2-31

SpatialMappingMatrix — Spatial mapping matrix
1 (default) | scalar | matrix | 3-D array

Spatial mapping matrix, specified as a scalar, matrix, or 3-D array. Use this property to
apply a beamforming steering matrix, and to rotate and scale the constellation mapper
output vector. If applicable, scale the space-time block coder output instead.
SpatialMappingMatrix applies when the SpatialMapping property is set to
'Custom'. For more information, see IEEE Std 802.11-2012, Section 20.3.11.11.2.

• When specified as a scalar, a constant value applies to all the subcarriers.
• When specified as a matrix, the size must be NSTS_Total-by-NT. The spatial mapping

matrix applies to all the subcarriers. NSTS_Total is the sum of space-time streams for all
users, and NT is the number of transmit antennas.

• When specified as a 3-D array, the size must be NST-by-NSTS_Total-by-NT. NST is the sum
of the occupied data (NSD) and pilot (NSP) subcarriers, as determined by
ChannelBandwidth. NSTS_Total is the sum of space-time streams for all users. NT is the
number of transmit antennas.

NST increases with channel bandwidth.

ChannelBandwidt
h

Number of
Occupied
Subcarriers (NST)

Number of Data
Subcarriers (NSD)

Number of Pilot
Subcarriers (NSP)

'CBW20' 56 52 4
'CBW40' 114 108 6
'CBW80' 242 234 8
'CBW160' 484 468 16

The calling function normalizes the spatial mapping matrix for each subcarrier.
Example: [0.5 0.3 0.4; 0.4 0.5 0.8] represents a spatial mapping matrix having two space-
time streams and three transmit antennas.
Data Types: double
Complex Number Support: Yes

Beamforming — Enable signaling of a transmission with beamforming
true (default) | false

Enable signaling of a transmission with beamforming, specified as a logical. Beamforming
is performed when setting is true. This property applies when NumUsers equals 1 and

2 Classes — Alphabetical List

2-32

SpatialMapping is set to 'Custom'. The SpatialMappingMatrix property specifies
the beamforming steering matrix.
Data Types: logical

STBC — Enable space-time block coding
false (default) | true

Enable space-time block coding (STBC) of the PPDU data field, specified as a logical.
STBC transmits multiple copies of the data stream across assigned antennas.

• When set to false, no STBC is applied to the data field, and the number of space-time
streams is equal to the number of spatial streams.

• When set to true, STBC is applied to the data field, and the number of space-time
streams is double the number of spatial streams.

See IEEE 802.11ac-2013, Section 22.3.10.9.4 for further description.

Note STBC is relevant for single-user transmissions only.

Data Types: logical

MCS — Modulation and coding scheme
0 (default) | integer from 0 to 9 | 1-by-NUsers vector of integers

Modulation and coding scheme used in transmitting the current packet, specified as a
scalar or vector.

• For a single user, the MCS value is a scalar integer from 0 to 9.
• For multiple users, MCS is a 1-by-NUsers vector of integers or a scalar with values from

0 to 9, where the vector length, NUsers, is an integer from 1 to 4.

MCS Modulation Coding Rate
0 BPSK 1/2
1 QPSK 1/2
2 QPSK 3/4
3 16QAM 1/2
4 16QAM 3/4

 wlanVHTConfig Properties

2-33

MCS Modulation Coding Rate
5 64QAM 2/3
6 64QAM 3/4
7 64QAM 5/6
8 256QAM 3/4
9 256QAM 5/6

Data Types: double

ChannelCoding — Type of forward error correction coding
'BCC' (default) | 'LDPC'

Type of forward error correction coding for the data field, specified as 'BCC' (default) or
'LDPC'. 'BCC' indicates binary convolutional coding and 'LDPC' indicates low density
parity check coding. Providing a character vector or a single cell character vector defines
the channel coding type for a single user or all users in a multiuser transmission. By
providing a cell array different channel coding types can be specified per user for a
multiuser transmission.
Data Types: char | cell | string

APEPLength — Number of bytes in the A-MPDU pre-EOF padding
1024 (default) | integer from 0 to 1,048,575 | vector of integers

Number of bytes in the A-MPDU pre-EOF padding, specified as a scalar integer or vector
of integers.

• For a single user, APEPLength is a scalar integer from 0 to 1,048,575.
• For multi-user, APEPLength is a 1-by-NUsers vector of integers or a scalar with values

from 0 to 1,048,575, where the vector length, NUsers, is an integer from 1 to 4.
• APEPLength = 0 for a null data packet (NDP).

APEPLength is used internally to determine the number of OFDM symbols in the data
field. For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

PSDULength — Number of bytes carried in the user payload
integer | vector of integers

2 Classes — Alphabetical List

2-34

This property is read-only.

Number of bytes carried in the user payload, including the A-MPDU and any MAC
padding. For a null data packet (NDP) the PSDU length is zero.

• For a single user, the PSDU length is a scalar integer from 1 to 1,048,575.
• For multiple users, the PSDU length is a 1-by-NUsers vector of integers from 1 to

1,048,575, where the vector length, NUsers, is an integer from 1 to 4.
• When undefined, PSDULength is returned as an empty of size 1×0. This can happen

when the set of property values for the object are in an invalid state.

PSDULength is a read-only property and is calculated internally based on the
APEPLength property and other coding-related properties, as specified in IEEE Std
802.11ac-2013, Section 22.4.3. It is accessible by direct property call.

Example: [1035 4150] is the PSDU length vector for a wlanVHTConfig object with two
users, where the MCS for the first user is 0 and the MCS for the second user is 3.
Data Types: double

GuardInterval — Cyclic prefix length for the data field within a packet
'Long' (default) | 'Short'

Cyclic prefix length for the data field within a packet, specified as 'Long' or 'Short'.

• The long guard interval length is 800 ns.
• The short guard interval length is 400 ns.

Data Types: char | string

GroupID — Group identification number
63 (default) | integer from 0 to 63

Group identification number, specified as a scalar integer from 0 to 63.

• A group identification number of either 0 or 63 indicates a VHT single-user PPDU.
• A group identification number from 1 to 62 indicates a VHT multi-user PPDU.

Data Types: double

PartialAID — Abbreviated indication of the PSDU recipient
275 (default) | integer from 0 to 511

 wlanVHTConfig Properties

2-35

Abbreviated indication of the PSDU recipient, specified as a scalar integer from 0 to 511.

• For an uplink transmission, the partial identification number is the last nine bits of the
basic service set identifier (BSSID).

• For a downlink transmission, the partial identification of a client is an identifier that
combines the association ID with the BSSID of its serving AP.

For more information, see IEEE Std 802.11ac-2013, Table 22-1.
Data Types: double

References
[1] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology —

Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications —
Amendment 4: Enhancements for Very High Throughput for Operation in Bands
below 6 GHz.

[2] IEEE Std 802.11™-2012 IEEE Standard for Information technology —
Telecommunications and information exchange between systems — Local and
metropolitan area networks — Specific requirements — Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

See Also
wlanHTConfig | wlanNonHTConfig | wlanVHTConfig | wlanWaveformGenerator

Introduced in R2015b

2 Classes — Alphabetical List

2-36

Classes — Alphabetical List

3

wlanTGacChannel System object
Filter signal through 802.11ac multipath fading channel

Description
The wlanTGacChannel System object™ filters an input signal through an 802.11ac
(TGac) multipath fading channel.

The fading processing assumes the same parameters for all NT-by-NR links of the TGac
channel, where NT is the number of transmit antennas and NR is the number of receive
antennas. Each link comprises all multipaths for that link.

To filter an input signal using a TGac multipath fading channel:

1 Create the wlanTGacChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
tgac = wlanTGacChannel
tgac = wlanTGacChannel(Name,Value)

Description
tgac = wlanTGacChannel creates a TGac fading channel System object, tgac. This
object filters a real or complex input signal through the TGac channel to obtain the
channel-impaired signal.

tgac = wlanTGacChannel(Name,Value) creates a TGac channel object, tgac, and
sets properties using one or more name-value pairs. Enclose each property name in

3 Classes — Alphabetical List

3-2

quotes. For example, wlanTGacChannel('NumReceiveAntennas',2,'SampleRate',
10e6) creates a TGac channel with two receive antennas and a 10 MHz sample rate.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

SampleRate — Sample rate of the input signal
80e6 (default) | real positive scalar

Sample rate of the input signal in Hz, specified as a real positive scalar.
Data Types: double

DelayProfile — Delay profile model
'Model-B' (default) | 'Model-A' | 'Model-C' | 'Model-D' | 'Model-E' | 'Model-F'

Delay profile model, specified as 'Model-A', 'Model-B', 'Model-C', 'Model-D',
'Model-E', or 'Model-F'. To enable the FluorescentEffect property, select either
'Model-D' or 'Model-E'.

The table summarizes the models properties before the bandwidth reduction factor.

Parameter Model
A B C D E F

Breakpoint distance
(m)

5 5 5 10 20 30

RMS delay spread
(ns)

0 15 30 50 100 150

Maximum delay (ns) 0 80 200 390 730 1050
Rician K-factor (dB) 0 0 0 3 6 6

 wlanTGacChannel System object

3-3

Parameter Model
A B C D E F

Number of taps 1 9 14 18 18 18
Number of clusters 1 2 2 3 4 6

The number of clusters represents the number of independently modeled propagation
paths.
Data Types: char | string

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. The default
is 'CBW80', which corresponds to an 80 MHz channel bandwidth.
Data Types: char | string

CarrierFrequency — RF carrier frequency
5.25e9 (default) | real positive scalar

RF carrier frequency in Hz, specified as a real positive scalar.
Data Types: double

EnvironmentalSpeed — Speed of the scatterers
0.089 (default) | real positive scalar

Speed of the scatterers in km/h, specified as a real positive scalar.
Data Types: double

TransmitReceiveDistance — Distance between transmitter and receiver
3 (default) | real positive scalar

Distance between the transmitter and receiver in meters, specified as a real positive
scalar.

TransmitReceiveDistance is used to compute the path loss, and to determine whether
the channel has a line of sight (LOS) or non line of sight (NLOS) condition. The path loss
and standard deviation of shadow fading loss depend on the separation between the
transmitter and the receiver.

3 Classes — Alphabetical List

3-4

Data Types: double

NormalizePathGains — Normalize path gains
true (default) | false

Normalize path gains, specified as true or false. To normalize the fading processes
such that the total power of the path gains, averaged over time, is 0 dB, set this property
to true (default). When you set this property to false, the path gains are not
normalized.
Data Types: logical

UserIndex — User index for single or multi-user scenario
0 (default) | nonnegative integer

User index, specified as a nonnegative integer. UserIndex specifies the single user or a
particular user in a multi-user scenario.
Data Types: double

TransmissionDirection — Transmission direction
'Downlink' (default) | 'Uplink'

Transmission direction of the active link, specified as either 'Downlink' or 'Uplink'.
Data Types: char | string

NumTransmitAntennas — Number of transmit antennas
1 (default) | 2 | 3 | 4 | 5 | 6 | 7 | 8

Number of transmit antennas, specified as a positive integer from 1 to 8.
Data Types: double

TransmitAntennaSpacing — Distance between transmit antenna elements
0.5 (default) | real positive scalar

Distance between transmit antenna elements, specified as a real positive scalar expressed
in wavelengths.

TransmitAntennaSpacing supports uniform linear arrays only.
Dependencies

This property applies only when NumTransmitAntennas is greater than 1.

 wlanTGacChannel System object

3-5

Data Types: double

NumReceiveAntennas — Number of receive antennas
1 (default) | 2 | 3 | 4 | 5 | 6 | 7 | 8

Number of receive antennas, specified as a positive integer from 1 to 8.
Data Types: double

ReceiveAntennaSpacing — Distance between receive antenna elements
0.5 (default) | real positive scalar

Distance between receive antenna elements, specified as a real positive scalar expressed
in wavelengths.

ReceiveAntennaSpacing supports uniform linear arrays only.
Dependencies

This property applies only when NumReceiveAntennas is greater than 1.
Data Types: double

LargeScaleFadingEffect — Large-scale fading effects
'None' (default) | 'Pathloss' | 'Shadowing' | 'Pathloss and shadowing'

Large-scale fading effects applied in the channel, specified as 'None', 'Pathloss',
'Shadowing', or 'Pathloss and shadowing'.
Data Types: char | string

FluorescentEffect — Fluorescent effect
true (default) | false

Fluorescent effect, specified as true or false. To include Doppler effects from
fluorescent lighting, set this property to true.
Dependencies

The FluorescentEffect property applies only when DelayProfile is 'Model-D' or
'Model-E'.
Data Types: logical

PowerLineFrequency — Power line frequency
'60Hz' (default) | '50Hz'

3 Classes — Alphabetical List

3-6

Power line frequency in Hz, specified as '50Hz' or '60Hz'.

The power line frequency is 60 Hz in the United States and 50 Hz in Europe.

Dependencies

This property applies only when you set FluorescentEffect to true and
DelayProfile to 'Model-D' or 'Model-E'.
Data Types: char | string

NormalizeChannelOutputs — Normalize channel outputs
true (default) | false

Normalize channel outputs by the number of receive antennas, specified as a true or
false.
Data Types: logical

RandomStream — Source of random number stream
'Global stream' (default) | 'mt19937ar with seed'

Source of random number stream, specified as 'Global stream' or 'mt19937ar with
seed'.

If you set RandomStream to 'Global stream', the current global random number
stream generates normally distributed random numbers. In this case, the reset function
resets the filters only.

If you set RandomStream to 'mt19937ar with seed', the mt19937ar algorithm
generates normally distributed random numbers. In this case, the reset function also
reinitializes the random number stream to the value of the Seed property.
Data Types: char | string

Seed — Initial seed of mt19937ar random number stream
73 (default) | nonnegative integer

Initial seed of an mt19937ar random number stream, specified as a nonnegative integer.
The Seed property reinitializes the mt19937ar random number stream in the reset
function.

 wlanTGacChannel System object

3-7

Dependencies

This property applies only when you set the RandomStream property to 'mt19937ar
with seed'.
Data Types: double

PathGainsOutputPort — Enable path gain output
false (default) | true

Enable path gain output computation, specified as true or false.
Data Types: logical

Usage

Syntax
y = tgac(x)
[y,pathGains] = tgac(x)

Description
y = tgac(x) filters input signal x through the TGac fading channel defined by the
wlanTGacChannel System object, tgac, and returns the result in y.

[y,pathGains] = tgac(x) also returns in pathGains the TGac channel path gains of
the underlying fading process.

This syntax applies when you set the PathGainsOutputPort property to true.

Input Arguments
x — Input signal
complex matrix

Input signal, specified as a real or complex NS-by-NT matrix, where:

3 Classes — Alphabetical List

3-8

• NS is the number of samples.
• NT is the number of transmit antennas and must be equal to the

NumTransmitAntennas property value.

Data Types: double
Complex Number Support: Yes

Output Arguments
y — Output signal
complex matrix

Output signal, returned as an NS-by-NR complex matrix, where:

• NS is the number of samples.
• NR is the number of receive antennas and is equal to the NumReceiveAntennas

property value.

Data Types: double

pathGains — Path gains of the fading process
complex array

Path gains of the fading process, returned as an NS-by-NP-by-NT-by-NR complex array,
where:

• NS is the number of samples.
• NP is the number of resolvable paths, that is, the number of paths defined for the case
specified by the DelayProfile property.

• NT is the number of transmit antennas and is equal to the NumTransmitAntennas
property value.

• NR is the number of receive antennas and is equal to the NumReceiveAntennas
property value.

Data Types: double

 wlanTGacChannel System object

3-9

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to wlanTGacChannel
info Characteristic information about multipath fading channel

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Note reset: If the RandomStream property of the System object is set to 'Global
stream', the reset function resets the filters only. If you set RandomStream to
'mt19937ar with seed', the reset function also reinitializes the random number
stream to the value of the Seed property.

Examples

Transmit VHT Waveform Through TGac Channel

Generate a VHT waveform and pass it through a TGac SISO channel. Display the
spectrum of the resultant signal.

Set the channel bandwidth and the corresponding sample rate.

bw = 'CBW80';
fs = 80e6;

Generate a VHT waveform.

cfg = wlanVHTConfig;
txSig = wlanWaveformGenerator(randi([0 1],1000,1),cfg);

3 Classes — Alphabetical List

3-10

Create a TGac SISO channel with path loss and shadowing enabled.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',bw, ...
 'LargeScaleFadingEffect','Pathloss and shadowing');

Pass the VHT waveform through the channel.

rxSig = tgacChan(txSig);

Plot the spectrum of the received waveform.

saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'YLimits',[-120 -40]);
saScope(rxSig)

Because path loss and shadowing are enabled, the mean received power across the
spectrum is approximately -60 dBm.

 wlanTGacChannel System object

3-11

Transmit VHT Waveform Through 4x2 MIMO Channel

Create a VHT waveform having four transmit antennas and two space-time streams.

cfg = wlanVHTConfig('NumTransmitAntennas',4,'NumSpaceTimeStreams',2, ...
 'SpatialMapping','Fourier');
txSig = wlanWaveformGenerator([1;0;0;1],cfg);

Create a 4x2 MIMO TGac channel and disable large-scale fading effects.

tgacChan = wlanTGacChannel('SampleRate',80e6,'ChannelBandwidth','CBW80', ...
 'NumTransmitAntennas',4,'NumReceiveAntennas',2, ...
 'LargeScaleFadingEffect','None');

Pass the transmit waveform through the channel.

rxSig = tgacChan(txSig);

Display the spectrum of the two received space-time streams.

saScope = dsp.SpectrumAnalyzer('SampleRate',80e6, ...
 'ShowLegend',true, ...
 'ChannelNames',{'Stream 1','Stream 2'});
saScope(rxSig)

3 Classes — Alphabetical List

3-12

Recover VHT Data from 2x2 MIMO Channel

Transmit a VHT-LTF and a VHT data field through a noisy 2x2 MIMO channel.
Demodulate the received VHT-LTF to estimate the channel coefficients. Recover the VHT
data and determine the number of bit errors.

Set the channel bandwidth and corresponding sample rate.

bw = 'CBW160';
fs = 160e6;

 wlanTGacChannel System object

3-13

Create VHT-LTF and VHT data fields having two transmit antennas and two space-time
streams.

cfg = wlanVHTConfig('ChannelBandwidth',bw, ...
 'NumTransmitAntennas',2,'NumSpaceTimeStreams',2);
txPSDU = randi([0 1],8*cfg.PSDULength,1);
txLTF = wlanVHTLTF(cfg);
txDataSig = wlanVHTData(txPSDU,cfg);

Create a 2x2 MIMO TGac channel.

tgacChan = wlanTGacChannel('SampleRate',fs,'ChannelBandwidth',bw, ...
 'NumTransmitAntennas',2,'NumReceiveAntennas',2);

Create an AWGN channel noise, setting SNR = 15 dB.

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...
 'SNR',15);

Pass the signals through the TGac channel and noise models.

rxLTF = chNoise(tgacChan(txLTF));
rxDataSig = chNoise(tgacChan(txDataSig));

Create an AWGN channel for a 160 MHz channel with a 9 dB noise figure. The noise
variance, nVar, is equal to kTBF, where k is Boltzmann's constant, T is the ambient
temperature of 290 K, B is the bandwidth (sample rate), and F is the receiver noise figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);
rxNoise = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

Pass the signals through the receiver noise model.

rxLTF = rxNoise(rxLTF);
rxDataSig = rxNoise(rxDataSig);

Demodulate the VHT-LTF. Use the demodulated signal to estimate the channel
coefficients.

dLTF = wlanVHTLTFDemodulate(rxLTF,cfg);
chEst = wlanVHTLTFChannelEstimate(dLTF,cfg);

Recover the data and determine the number of bit errors.

rxPSDU = wlanVHTDataRecover(rxDataSig,chEst,nVar,cfg);
numErr = biterr(txPSDU,rxPSDU)

3 Classes — Alphabetical List

3-14

numErr = 0

Algorithms
The algorithms used to model the TGac channel are based on those used for the TGn
channel and are described in wlanTGnChannel and [1]. The changes to support the TGac
channel include:

• Increased bandwidth
• Higher-order MIMO
• Multi-user MIMO
• Reduced Doppler
• Dual-polarized antennas

Complete information on the changes required to support TGac channels can be found in
[2].

Increased Bandwidth
TGac channels support bandwidths of up to 1.28 GHz, whereas TGn channels have a
maximum bandwidth of 40 MHz. By increasing the sampling rate and decreasing the tap
spacing of the power delay profile (PDP), the TGn model is used as the basis for TGac.

The channel sampling rate is increased by a factor of 2 2 40log W()ÈÍ ˘̇ , where W is the
bandwidth. The PDP tap spacing is reduced by the same factor.

Bandwidth, W Sampling Rate Expansion
Factor

PDP Tap Spacing (ns)

W ≤ 40 MHz 1 10
40 MHz < W ≤ 80 MHz 2 5
80 MHz < W ≤ 160 MHz 4 2.5
160 MHz < W ≤ 320 MHz 8 1.25
320 MHz < W ≤ 640 MHz 16 0.625
640 MHz < W ≤ 1280 MHz 32 0.3125

 wlanTGacChannel System object

3-15

MIMO Enhancements
The TGn channel model supports no more than 4x4 MIMO, while the TGac model
supports 8x8 MIMO.

The TGac model also includes support for multiple users while simultaneous
communication takes place between access points and user stations. Accordingly, the
TGac model extends the concept of cluster angles of arrival and departure to account for
point-to-multipoint transmission. For more details, see [3].

Reduced Doppler
Indoor channel measurements indicate that the magnitude of Doppler assumed in the TGn
channel model is too high for stationary users. As such, the TGac channel model uses a
reduced environment velocity of 0.089 km/hr. This model assumes a coherence time of
800 ms or, equivalently, an RMS Doppler spread of 0.4 Hz for a 5 GHz carrier frequency.

References
[1] Erceg, V., L. Schumacher, P. Kyritsi, et al. TGn Channel Models. Version 4. IEEE

802.11-03/940r4, May 2004.

[2] Breit, G., H. Sampath, S. Vermani, et al.TGac Channel Model Addendum. Version 12.
IEEE 802.11-09/0308r12, March 2010.

[3] Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen. “A
Stochastic MIMO Radio Channel Model with Experimental Validation”. IEEE
Journal on Selected Areas in Communications. Vol. 20, No. 6, August 2002, pp.
1211–1226.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

3 Classes — Alphabetical List

3-16

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

Use in a MATLAB Function block is not supported.

See Also
System Objects
wlanTGahChannel | wlanTGaxChannel | wlanTGnChannel

Introduced in R2015b

 wlanTGacChannel System object

3-17

wlanTGahChannel System object
Filter signal through 802.11ah multipath fading channel

Description
The wlanTGahChannel System object filters an input signal through an 802.11ah (TGah)
indoor MIMO channel as specified in [1], following the MIMO modeling approach
described in [4].

The fading processing assumes the same parameters for all NT-by-NR links of the TGah
channel, where NT is the number of transmit antennas and NR is the number of receive
antennas. Each link comprises all multipaths for that link.

To filter an input signal using a TGah multipath fading channel:

1 Create the wlanTGahChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
tgah = wlanTGahChannel
tgah = wlanTGahChannel(Name,Value)

Description
tgah = wlanTGahChannel creates a TGah channel System object, tgah. This object
filters a real or complex input signal through the TGah channel to obtain the channel-
impaired signal.

3 Classes — Alphabetical List

3-18

tgah = wlanTGahChannel(Name,Value) creates a TGah channel object, tgah, and
sets properties using one or more name-value pairs. Enclose each property name in
quotes. For example, wlanTGahChannel('NumReceiveAntennas',4,'SampleRate',
4e6) creates a TGah channel with four receive antennas and a 4 MHz sample rate.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

SampleRate — Sample rate of the input signal
2e6 (default) | real positive scalar

Sample rate of the input signal in Hz, specified as a real positive scalar.
Data Types: double

DelayProfile — Delay profile model
'Model-B' (default) | 'Model-A' | 'Model-C' | 'Model-D' | 'Model-E' | 'Model-F'

Delay profile model, specified as 'Model-A', 'Model-B', 'Model-C', 'Model-D',
'Model-E', or 'Model-F'.

The table summarizes the models properties before the bandwidth reduction factor.

Parameter Model
A B C D E F

Breakpoint distance
(m)

5 5 5 10 20 30

RMS delay spread
(ns)

0 15 30 50 100 150

Maximum delay (ns) 0 80 200 390 730 1050

 wlanTGahChannel System object

3-19

Parameter Model
A B C D E F

Rician K-factor (dB) 0 0 0 3 6 6
Number of taps 1 9 14 18 18 18
Number of clusters 1 2 2 3 4 6

The number of clusters represents the number of independently modeled propagation
paths.
Data Types: char | string

ChannelBandwidth — Channel bandwidth
'CBW2' (default) | 'CBW1' | 'CBW4' | 'CBW8' | 'CBW16'

Channel bandwidth, specified as 'CBW1', 'CBW2', 'CBW4', 'CBW8', or 'CBW16'. The
default is 'CBW2', which corresponds to a 2 MHz channel bandwidth.

For channel bandwidths greater than 4 MHz, the TGah channel applies a reduction factor
to the multipath spacing of the power delay profile. The reduction factor applied is
2ceil(log2(BW/4)), where BW is the channel bandwidth in MHz. For more information, see TGac
Channel Model Addendum [3].
Data Types: char | string

CarrierFrequency — RF carrier frequency
915e6 (default) | real positive scalar

RF carrier frequency in Hz, specified as a real positive scalar.
Data Types: double

EnvironmentalSpeed — Speed of the scatterers
0.089 (default) | real positive scalar

Speed of the scatterers in km/h, specified as a real positive scalar.
Data Types: double

TransmitReceiveDistance — Distance between transmitter and receiver
3 (default) | real positive scalar

3 Classes — Alphabetical List

3-20

Distance between the transmitter and receiver in meters, specified as a real positive
scalar.

TransmitReceiveDistance is used to compute the path loss, and to determine whether
the channel has a line of sight (LOS) or no line of sight (NLOS) condition. The path loss
and standard deviation of shadow fading loss depend on the separation between the
transmitter and the receiver.
Data Types: double

NormalizePathGains — Normalize path gains
true (default) | false

Normalize path gains, specified as true or false. To normalize the fading processes
such that the total power of the path gains, averaged over time, is 0 dB, set this property
to true (default). When you set this property to false, the path gains are not
normalized.
Data Types: logical

UserIndex — User index for single or multi-user scenario
0 (default) | nonnegative integer

User index, specified as a nonnegative integer. UserIndex specifies the single user or a
particular user in a multi-user scenario.

To support a multi-user scenario, a pseudorandom per-user angle-of-arrival (AoA) and
angle-of-departure (AoD) rotation is applied. A value of 0 indicates a simulation scenario
that does not require per-user angle diversity and assumes the TGn defined cluster AoAs
and AoDs.
Data Types: double

TransmissionDirection — Transmission direction
'Downlink' (default) | 'Uplink'

Transmission direction of the active link, specified as either 'Downlink' or 'Uplink'.
Data Types: char | string

NumTransmitAntennas — Number of transmit antennas
1 (default) | 2 | 3 | 4

Number of transmit antennas, specified as a positive integer from 1 to 4.

 wlanTGahChannel System object

3-21

Data Types: double

TransmitAntennaSpacing — Distance between transmit antenna elements
0.5 (default) | real positive scalar

Distance between transmit antenna elements, specified as a real positive scalar expressed
in wavelengths.

TransmitAntennaSpacing supports uniform linear arrays only.

Dependencies

This property applies only when NumTransmitAntennas is greater than 1.
Data Types: double

NumReceiveAntennas — Number of receive antennas
1 (default) | 2 | 3 | 4

Number of receive antennas, specified as a positive integer from 1 to 4.
Data Types: double

ReceiveAntennaSpacing — Distance between receive antenna elements
0.5 (default) | real positive scalar

Distance between receive antenna elements, specified as a real positive scalar expressed
in wavelengths.

ReceiveAntennaSpacing supports uniform linear arrays only.

Dependencies

This property applies only when NumReceiveAntennas is greater than 1.
Data Types: double

LargeScaleFadingEffect — Large-scale fading effects
'None' (default) | 'Pathloss' | 'Shadowing' | 'Pathloss and shadowing'

Large-scale fading effects applied in the channel, specified as 'None', 'Pathloss',
'Shadowing', or 'Pathloss and shadowing'.
Data Types: char | string

3 Classes — Alphabetical List

3-22

NumPenetratedFloors — Number of building floors
0 (default) | real positive integer

Number of building floors between the transmitter and the receiver, specified as a real
positive integer. Use this property in multiple floor scenarios to account for the floor
attenuation loss in the path loss calculation. The default is 0, which represents a
communication link between a transmitter and a receiver located on the same floor.

Dependencies

The NumPenetratedFloors property applies only when DelayProfile is 'Model-A'
or 'Model-B'.
Data Types: double

FluorescentEffect — Fluorescent effect
true (default) | false

Fluorescent effect, specified as true or false. To include Doppler effects from
fluorescent lighting set this property as true.

Dependencies

The FluorescentEffect property applies only when DelayProfile is 'Model-D' or
'Model-E'.
Data Types: logical

PowerLineFrequency — Power line frequency
'60Hz' (default) | '50Hz'

Power line frequency in Hz, specified as '50Hz' or '60Hz'.

The power line frequency is 60 Hz in the United States and 50 Hz in Europe.

Dependencies

This property applies only when you set FluorescentEffect to true and
DelayProfile to 'Model-D' or 'Model-E'.
Data Types: char | string

NormalizeChannelOutputs — Normalize channel outputs
true (default) | false

 wlanTGahChannel System object

3-23

Normalize channel outputs by the number of receive antennas, specified as a true or
false.
Data Types: logical

RandomStream — Source of random number stream
'Global stream' (default) | 'mt19937ar with seed'

Source of random number stream, specified as 'Global stream' or 'mt19937ar with
seed'.

If you set RandomStream to 'Global stream', the current global random number
stream generates normally distributed random numbers. In this case, the reset function
resets the filters only.

If you set RandomStream to 'mt19937ar with seed', the mt19937ar algorithm
generates normally distributed random numbers. In this case, the reset function also
reinitializes the random number stream to the value of the Seed property.
Data Types: char | string

Seed — Initial seed of mt19937ar random number stream
73 (default) | nonnegative integer

Initial seed of an mt19937ar random number stream, specified as a nonnegative integer.
The Seed property reinitializes the mt19937ar random number stream in the reset
function.

Dependencies

This property applies only when you set the RandomStream property to 'mt19937ar
with seed'.
Data Types: double

PathGainsOutputPort — Enable path gain output
false (default) | true

Enable path gain output computation, specified as true or false.
Data Types: logical

3 Classes — Alphabetical List

3-24

Usage

Syntax
y = tgah(x)
[y,pathGains] = tgah(x)

Description
y = tgah(x) filters input signal x through the TGah fading channel defined by the
wlanTGahChannel System object, tgah, and returns the result in y.

[y,pathGains] = tgah(x) also returns in pathGains the TGah channel path gains of
the underlying fading process.

This syntax applies when you set the PathGainsOutputPort property to true.

Input Arguments
x — Input signal
complex matrix

Input signal, specified as a real or complex NS-by-NT matrix, where:

• NS is the number of samples.
• NT is the number of transmit antennas and must be equal to the

NumTransmitAntennas property value.

Data Types: double
Complex Number Support: Yes

Output Arguments
y — Output signal
complex matrix

Output signal, returned as an NS-by-NR complex matrix, where:

 wlanTGahChannel System object

3-25

• NS is the number of samples.
• NR is the number of receive antennas and is equal to the NumReceiveAntennas

property value.

Data Types: double

pathGains — Path gains of the fading process
complex array

Path gains of the fading process, returned as an NS-by-NP-by-NT-by-NR complex array,
where:

• NS is the number of samples.
• NP is the number of resolvable paths, that is, the number of paths defined for the case
specified by the DelayProfile property.

• NT is the number of transmit antennas and is equal to the NumTransmitAntennas
property value.

• NR is the number of receive antennas and is equal to the NumReceiveAntennas
property value.

Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to wlanTGahChannel
info Characteristic information about multipath fading channel

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

3 Classes — Alphabetical List

3-26

Note reset: If the RandomStream property of the System object is set to 'Global
stream', the reset function resets the filters only. If you set RandomStream to
'mt19937ar with seed', the reset function also reinitializes the random number
stream to the value of the Seed property.

Examples

Pass S1G Waveform Through TGah Channel

Filter an 802.11ah waveform through a TGah channel.

cfgS1G = wlanS1GConfig;
txWaveform = wlanWaveformGenerator([1;0;0;1],cfgS1G);

Create a TGah channel object and adjust some default properties. Specify a seed value to
produce a repeatable channel output. Create an S1G configuration object and waveform.
Pass the S1G waveform through the channel by supplying it as an input to the TGah
channel object.

tgah = wlanTGahChannel;
tgah.LargeScaleFadingEffect = 'PathLoss and shadowing';
tgah.FloorSeparation = 2;
tgah.RandomStream = 'mt19937ar with seed';
tgah.Seed = 10;

channelOutput = tgah(txWaveform);

Confirm the channel bandwidth and set the corresponding sample rate.

cfgS1G.ChannelBandwidth

ans =
'CBW2'

fs = 2e6;

Plot the spectrum of the channel output waveform.

saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'YLimits',[-110 -30]);
saScope(channelOutput)

 wlanTGahChannel System object

3-27

Across the spectrum, the mean power of the channel output waveform is approximately
-50 dBm.

TGah Channel Model-B Delay Profile

Plot the delay profile for an impulse waveform passed through a TGah channel.

Create an impulse waveform. Delay the impulse by 10 samples, which is equivalent to 10
ns in time.

txWaveform = zeros(100,1);
txWaveform(11) = 1;

3 Classes — Alphabetical List

3-28

Create a TGah channel object. Specify the seed sfor reproducible results.

tgah = wlanTGahChannel;
tgah.RandomStream = 'mt19937ar with seed';
tgah.Seed = 10;

Set the sample rate so that sampling of the channel multipaths are integer multiples of
integer sampling delay.

tgah.SampleRate = 1e9;

chOut = tgah(txWaveform);
plot((0:length(chOut)-1)*1/tgah.SampleRate,abs(chOut));
xlabel('Time[s]'); ylabel('abs(chOut)');
title('Channel Power Delay Profile: Model-B')

 wlanTGahChannel System object

3-29

Transmit S1G Waveform Through 4x2 MIMO Channel

Create a S1G waveform generated using four transmit antennas and two spatial streams.

cfg = wlanS1GConfig('NumTransmitAntennas',4,'NumSpaceTimeStreams',2, ...
 'SpatialMapping','Fourier');
txSig = wlanWaveformGenerator([1;0;0;1],cfg);

Create a 4x2 MIMO TGah channel and disable large-scale fading effects.

3 Classes — Alphabetical List

3-30

tgahChan = wlanTGahChannel('SampleRate',1e6,'ChannelBandwidth','CBW1', ...
 'NumTransmitAntennas',4,'NumReceiveAntennas',2, ...
 'LargeScaleFadingEffect','None');

Pass the transmit waveform through the channel.

rxSig = tgahChan(txSig);

Display the spectrum of the two received space-time streams.

saScope = dsp.SpectrumAnalyzer('SampleRate',1e6, ...
 'ShowLegend',true, ...
 'ChannelNames',{'Stream 1','Stream 2'});
saScope(rxSig)

 wlanTGahChannel System object

3-31

Algorithms
The algorithms used to model the TGah channel are based on those used for the TGn
channel (as described in wlanTGnChannel and TGn Channel Models [2]) and the TGac
channel (as described in wlanTGacChannel and TGac Channel Model Addendum [3]).
Complete information on the changes required to support TGah channels can be found in
TGah Channel Model [1]. The changes to support the TGah channel include lower
bandwidths, floor separation attenuation, Wall Separation Attenuation, and path loss and
shadowing.

Lower Bandwidths
The TGah channel model supports channel bandwidths down to 1 MHz.

Floor Separation Attenuation
In the TGah channel, the path loss model used to compute the spatial correlation
accounts for floor separation attenuation effects. The floor separation loss depends on the
number of floors penetrated as shown in the equation:

PELfloor= 18.3n(n + 2)/(n + 1) -0.46,

where n is the number of floors, represented by NumPenetratedFloors property of the
System object. For more information, see TGah Channel Model [1].

MIMO Enhancements
The TGah channel model supports up to 4x4 MIMO.

The TGah model also includes support for multiple users while simultaneous
communication takes place between access points and user stations. Accordingly, the
TGah model extends the concept of cluster angles of arrival and departure to account for
point-to-multipoint transmission. For more information, see Stochastic MIMO Radio
Channel Model with Experimental Validation [4].

Path Loss and Shadowing
TGah Channel Model [1], Table 2 defines path loss parameters that are slightly modified
from those defined for TGn. Specifically, the shadow fading values corresponding to
breakpoint distance are 1 dB less for all TGah channel models.

3 Classes — Alphabetical List

3-32

The path loss exponent and the standard deviation of the shadow fading loss characterize
each model. The two parameters depend on the presence of a line of sight (LOS) between
the transmitter and receiver. For paths with a transmitter-to-receiver distance, d, less that
the breakpoint distance, dBP, the LOS parameters apply. For d > dBP, the non line of sight
(NLOS) parameters apply. The table summarizes the path loss and shadow fading
parameters.

Parameter Model
A B C D E F

Breakpoint distance, dBP (m) 5 5 5 10 20 30
Path loss exponent for d ≤ dBP 2 2 2 2 2 2
Path loss exponent for d > dBP 3.5 3.5 3.5 3.5 3.5 3.5
Shadow fading σ (dB) for
d ≤ dBP 2 2 2 2 2 2
Shadow fading σ (dB) for
d > dBP 3 3 4 4 5 5

References
[1] Porat R., S. K. Yong, and K. Doppler. TGah Channel Model. IEEE 802.11-11/0968r4,

March 2015.

[2] Erceg, V., L. Schumacher, P. Kyritsi, et al. TGn Channel Models. Version 4. IEEE
802.11-03/940r4, May 2004.

[3] Breit, G., H. Sampath, S. Vermani, et al. TGac Channel Model Addendum. Version 12.
IEEE 802.11-09/0308r12, March 2010.

[4] Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen. “A
Stochastic MIMO Radio Channel Model with Experimental Validation.” IEEE
Journal on Selected Areas in Communications. Vol. 20, No. 6, August 2002, pp.
1211–1226.

 wlanTGahChannel System object

3-33

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

Use in a MATLAB Function block is not supported.

See Also
System Objects
wlanTGacChannel | wlanTGaxChannel | wlanTGnChannel

Introduced in R2017a

3 Classes — Alphabetical List

3-34

wlanTGaxChannel System object
Filter signal through 802.11ax multipath fading channel

Description
The wlanTGaxChannel System object filters an input signal through an 802.11ax™
(TGax) indoor MIMO channel as specified in [1], following the MIMO modeling approach
described in [4].

The fading processing assumes the same parameters for all NT-by-NR links of the TGax
channel, where NT is the number of transmit antennas and NR is the number of receive
antennas. Each link comprises all multipaths for that link.

To filter an input signal using a TGax multipath fading channel:

1 Create the wlanTGaxChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
tgax = wlanTGaxChannel
tgax = wlanTGaxChannel(Name,Value)

Description
tgax = wlanTGaxChannel creates a TGax channel System object, tgax. This object
filters a real or complex input signal through the TGax channel to obtain the channel-
impaired signal.

 wlanTGaxChannel System object

3-35

tgax = wlanTGaxChannel(Name,Value) creates a TGax channel object, tgax, and
sets properties using one or more name-value pairs. Enclose each property name in
quotes. For example, wlanTGaxChannel('NumReceiveAntennas',2,'SampleRate',
10e6) creates a TGax channel with two receive antennas and a 10 MHz sample rate.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

SampleRate — Sample rate of the input signal
80e6 (default) | real positive scalar

Sample rate of the input signal in Hz, specified as a real positive scalar.
Data Types: double

DelayProfile — Delay profile model
'Model-B' (default) | 'Model-A' | 'Model-C' | 'Model-D' | 'Model-E' | 'Model-F'

Delay profile model, specified as 'Model-A', 'Model-B', 'Model-C', 'Model-D',
'Model-E', or 'Model-F'.

The table summarizes the models properties before the bandwidth reduction factor.

Parameter Model
A B C D E F

Breakpoint distance
(m)

5 5 5 10 20 30

RMS delay spread
(ns)

0 15 30 50 100 150

Maximum delay (ns) 0 80 200 390 730 1050

3 Classes — Alphabetical List

3-36

Parameter Model
A B C D E F

Rician K-factor (dB) 0 0 0 3 6 6
Number of taps 1 9 14 18 18 18
Number of clusters 1 2 2 3 4 6

The number of clusters represents the number of independently modeled propagation
paths.
Data Types: char | string

ChannelBandwidth — Channel bandwidth
'CBW80' (default) | 'CBW20' | 'CBW40' | 'CBW160'

Channel bandwidth, specified as 'CBW20', 'CBW40', 'CBW80', or 'CBW160'. The default
is 'CBW80', which corresponds to an 80 MHz channel bandwidth.
Data Types: char | string

CarrierFrequency — RF carrier frequency
5.25e9 (default) | real positive scalar

RF carrier frequency in Hz, specified as a real positive scalar.
Data Types: double

EnvironmentalSpeed — Speed of the scatterers
0.089 (default) | real positive scalar

Speed of the scatterers in km/h, specified as a real positive scalar.
Data Types: double

TransmitReceiveDistance — Distance between transmitter and receiver
3 (default) | real positive scalar

Distance between the transmitter and receiver in meters, specified as a real positive
scalar.

TransmitReceiveDistance is used to compute the path loss, and to determine whether
the channel has a line of sight (LOS) or non line of sight (NLOS) condition. The path loss

 wlanTGaxChannel System object

3-37

and standard deviation of shadow fading loss depend on the separation between the
transmitter and the receiver.
Data Types: double

NormalizePathGains — Normalize path gains
true (default) | false

Normalize path gains, specified as true or false. To normalize the fading processes
such that the total power of the path gains, averaged over time, is 0 dB, set this property
to true (default). When you set this property to false, the path gains are not
normalized.
Data Types: logical

UserIndex — User index for single or multi-user scenario
0 (default) | nonnegative integer

User index, specified as a nonnegative integer. UserIndex specifies the single user or a
particular user in a multiuser scenario.

To support a multi-user scenario, a pseudorandom per-user angle-of-arrival (AoA) and
angle-of-departure (AoD) rotation is applied. A value of 0 indicates a simulation scenario
that does not require per-user angle diversity and assumes the TGn defined cluster AoAs
and AoDs.
Data Types: double

TransmissionDirection — Transmission direction
'Downlink' (default) | 'Uplink'

Transmission direction of the active link, specified as either 'Downlink' or 'Uplink'.
Data Types: char | string

NumTransmitAntennas — Number of transmit antennas
1 (default) | 2 | 3 | 4 | 5 | 6 | 7 | 8

Number of transmit antennas, specified as a positive integer from 1 to 8.
Data Types: double

TransmitAntennaSpacing — Distance between transmit antenna elements
0.5 (default) | real positive scalar

3 Classes — Alphabetical List

3-38

Distance between transmit antenna elements, specified as a real positive scalar expressed
in wavelengths.

TransmitAntennaSpacing supports uniform linear arrays only.

Dependencies

This property applies only when NumTransmitAntennas is greater than 1.
Data Types: double

NumReceiveAntennas — Number of receive antennas
1 (default) | 2 | 3 | 4 | 5 | 6 | 7 | 8

Number of receive antennas, specified as a positive integer from 1 to 8.
Data Types: double

ReceiveAntennaSpacing — Distance between receive antenna elements
0.5 (default) | real positive scalar

Distance between receive antenna elements, specified as a real positive scalar expressed
in wavelengths.

ReceiveAntennaSpacing supports uniform linear arrays only.

Dependencies

This property applies only when NumReceiveAntennas is greater than 1.
Data Types: double

LargeScaleFadingEffect — Large-scale fading effects
'None' (default) | 'Pathloss' | 'Shadowing' | 'Pathloss and shadowing'

Large-scale fading effects applied in the channel, specified as 'None', 'Pathloss',
'Shadowing', or 'Pathloss and shadowing'.
Data Types: char | string

NumPenetratedFloors — Number of building floors
0 (default) | real positive integer

Number of building floors between the transmitter and the receiver, specified as a real
positive integer. Use this property in multiple floor scenarios to account for the floor

 wlanTGaxChannel System object

3-39

attenuation loss in the path loss calculation. The default is 0, which represents a
communication link between a transmitter and a receiver located on the same floor.

Dependencies

The NumPenetratedFloors property applies only when DelayProfile is 'Model-A'
or 'Model-B'.
Data Types: double

NumPenetratedWalls — Number of walls
0 (default) | real positive integer

Number of walls between the transmitter and receiver, specified as a real positive integer.
Use this property to account for the wall penetration loss in the path loss calculation.

The default is 0, which represents a communication link between a transmitter and a
receiver without wall penetration loss.
Data Types: double

WallPenetrationLoss — Penetration loss of a single wall
5 (default) | real scalar

Penetration loss of a single wall in dB, specified as a real scalar.

Dependencies

The WallPenetrationLoss property applies only when NumPenetratedWalls is
greater than 0.
Data Types: double

FluorescentEffect — Fluorescent effect
true (default) | false

Fluorescent effect, specified as true or false. To include Doppler effects from
fluorescent lighting, set this property to true.

Dependencies

The FluorescentEffect property applies only when DelayProfile is 'Model-D' or
'Model-E'.
Data Types: logical

3 Classes — Alphabetical List

3-40

PowerLineFrequency — Power line frequency
'60Hz' (default) | '50Hz'

Power line frequency in Hz, specified as '50Hz' or '60Hz'.

The power line frequency is 60 Hz in the United States and 50 Hz in Europe.

Dependencies

This property applies only when you set FluorescentEffect to true and
DelayProfile to 'Model-D' or 'Model-E'.
Data Types: char | string

NormalizeChannelOutputs — Normalize channel outputs
true (default) | false

Normalize channel outputs by the number of receive antennas, specified as a true or
false.
Data Types: logical

RandomStream — Source of random number stream
'Global stream' (default) | 'mt19937ar with seed'

Source of random number stream, specified as 'Global stream' or 'mt19937ar with
seed'.

If you set RandomStream to 'Global stream', the current global random number
stream generates normally distributed random numbers. In this case, the reset function
resets the filters only.

If you set RandomStream to 'mt19937ar with seed', the mt19937ar algorithm
generates normally distributed random numbers. In this case, the reset function also
reinitializes the random number stream to the value of the Seed property.
Data Types: char | string

Seed — Initial seed of mt19937ar random number stream
73 (default) | nonnegative integer

Initial seed of an mt19937ar random number stream, specified as a nonnegative integer.
The Seed property reinitializes the mt19937ar random number stream in the reset
function.

 wlanTGaxChannel System object

3-41

Dependencies

This property applies only when you set the RandomStream property to 'mt19937ar
with seed'.
Data Types: double

PathGainsOutputPort — Enable path gain output
false (default) | true

Enable path gain output computation, specified as true or false.
Data Types: logical

Usage

Syntax
y = tgax(x)
[y,pathGains] = tgax(x)

Description
y = tgax(x) filters input signal x through the TGax fading channel defined by the
wlanTGaxChannel System object, tgax, and returns the result in y.

[y,pathGains] = tgax(x) also returns in pathGains the TGax channel path gains of
the underlying fading process.

This syntax applies when you set the PathGainsOutputPort property of tgax to true.

Input Arguments
x — Input signal
complex matrix

Input signal, specified as a real or complex NS-by-NT matrix, where:

3 Classes — Alphabetical List

3-42

• NS is the number of samples.
• NT is the number of transmit antennas and must be equal to the

NumTransmitAntennas property value of tgax.

Data Types: double
Complex Number Support: Yes

Output Arguments
y — Output signal
complex matrix

Output signal, returned as an NS-by-NR complex matrix, where:

• NS is the number of samples.
• NR is the number of receive antennas and is equal to the NumReceiveAntennas

property value of tgax.

Data Types: double

pathGains — Path gains of the fading process
complex array

Path gains of the fading process, returned as an NS-by-NP-by-NT-by-NR complex array,
where:

• NS is the number of samples.
• NP is the number of resolvable paths, that is, the number of paths defined for the case
specified by the DelayProfile property.

• NT is the number of transmit antennas and is equal to the NumTransmitAntennas
property value of tgax.

• NR is the number of receive antennas and is equal to the NumReceiveAntennas
property value of tgax.

Data Types: double

 wlanTGaxChannel System object

3-43

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to wlanTGaxChannel
info Characteristic information about multipath fading channel

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Note reset: If the RandomStream property of the System object is set to 'Global
stream', the reset function resets the filters only. If you set RandomStream to
'mt19937ar with seed', the reset function also reinitializes the random number
stream to the value of the Seed property.

Examples

TGax Channel Impulse Response

Obtain a channel impulse response by filtering an impulse through a TGax channel.

Create an impulse.

input = zeros(100,1);
input(10) = 1;

Create the TGax channel System Object with path loss and shadowing, two penetrated
floors, and a sampling rate of 1 GHz.

tgax = wlanTGaxChannel;
tgax.LargeScaleFadingEffect = 'Pathloss and shadowing';

3 Classes — Alphabetical List

3-44

tgax.NumPenetratedFloors = 2;
tgax.RandomStream = 'mt19937ar with seed';
tgax.Seed = 10;
tgax.SampleRate = 1e9;

Plot the output impulse response of the channel.

figure
time = (1/tgax.SampleRate)*(0:length(input)-1);
stem(time,abs(tgax(input)))
xlabel('Time (s)')
ylabel('Amplitude')
title('Channel Impulse Response')

 wlanTGaxChannel System object

3-45

TGax Channel Delay Profile and Path Gains

Plot the delay profile and path gains of a TGax channel.

Create an impulse.

input = zeros(100,4);
input(10) = 1;

Create the TGax channel System Object. Enable path gains at the output, and specify path
loss, 20 MHz of channel bandwidth, a 4x2 MIMO channel, four penetrated floors, and a
sampling rate of 1 GHz.

tgax = wlanTGaxChannel;
tgax.LargeScaleFadingEffect = 'Pathloss';
tgax.ChannelBandwidth = 'CBW20';
tgax.NumTransmitAntennas = 4;
tgax.NumReceiveAntennas = 2;
tgax.NumPenetratedFloors = 4;
tgax.RandomStream = 'mt19937ar with seed';
tgax.Seed = 10;
tgax.SampleRate = 1e9;
tgax.PathGainsOutputPort = true;

Filter the input impulse. Use the TGax channel object to generate the output response
and the path gains.

[out,pathgains]= tgax(input);

Plot the output impulse response of the channel. The channel has two delay profiles, one
per each receive antenna.

figure
time = (1/tgax.SampleRate)*(0:length(input)-1);
stem(time,abs(out))
xlabel('Time (s)')
ylabel('Amplitude')
title('Delay Profile')

3 Classes — Alphabetical List

3-46

The path gains of the channel are contained in a four dimensional array since the channel
has nine resolvable paths, four transmit antennas and two receive antennas.

size(pathgains)

ans = 1×4

 100 9 4 2

 wlanTGaxChannel System object

3-47

Algorithms
The algorithms used to model the TGax channel are based on those used for the TGn
channel (as described in wlanTGnChannel and TGn Channel Models [2]) and the TGac
channel (as described in wlanTGacChannel and TGac Channel Model Addendum [3]).
Complete information on the changes required to support TGax channels can be found in
TGax Channel Model [1]. The changes to support the TGax channel include lower
bandwidths, floor separation attenuation, wall separation attenuation, and path loss and
shadowing.

Floor Separation Attenuation
In the TGax channel, the path loss model used to compute the spatial correlation accounts
for floor separation attenuation effects. The floor separation loss depends on the number
of floors penetrated, as shown in the equation:

PELfloor= 18.3n(n + 2)/(n + 1) -0.46,

where n is the number of floors, represented by the NumPenetratedFloors property of
the System object. For more information, see TGax Channel Model [1].

Wall Separation Attenuation
In the TGax channel, the path loss model used to compute the spatial correlation accounts
for wall separation attenuation effects. The wall separation loss is defined by the
following equation:

PELwall= m×Liw.

Where m is the number of walls penetrated, and Liw is the penetration loss for a single
wall. The variables m and Liw are represented by the NumPenetratedWalls and
WallPenetrationLoss properties of the System object, respectively. For more
information, see TGax Channel Model [1].

MIMO Enhancements
The TGax channel model supports up to 8x8 MIMO.

The TGax model also includes support for multiple users while simultaneous
communication takes place between access points and user stations. Accordingly, the
TGax model extends the concept of cluster angles of arrival and departure to account for

3 Classes — Alphabetical List

3-48

point-to-multipoint transmission. For more information, see Stochastic MIMO Radio
Channel Model with Experimental Validation [4].

Path Loss and Shadowing
In TGax Channel Model [1], Table 3 defines path loss parameters that are slightly
modified from those defined for TGn. The floor penetration loss and wall penetration loss
are added to this path loss.

The path loss exponent and the standard deviation of the shadow fading loss characterize
each model. The two parameters depend on the presence of a line of sight (LOS) between
the transmitter and receiver. For paths with a transmitter-to-receiver distance, d, less
than the breakpoint distance, dBP, the LOS parameters apply. For d > dBP, the non line of
sight (NLOS) parameters apply. The table summarizes the path loss and shadow fading
parameters.

Parameter Model
B D

Breakpoint distance, dBP (m) 5 10
Path loss exponent for d ≤ dBP 2 2
Path loss exponent for d > dBP 3.5 3.5
Shadow fading σ (dB) for
d ≤ dBP 3 3
Shadow fading σ (dB) for
d > dBP 4 5

References
[1] Jianhan. L, Ron. P, et al. TGax Channel Model. IEEE802.11-14/0882r4, September

2014.

[2] Erceg, V., L. Schumacher, P. Kyritsi, et al. TGn Channel Models. Version 4. IEEE
802.11-03/940r4, May 2004.

[3] Breit, G., H. Sampath, S. Vermani, et al. TGac Channel Model Addendum. Version 12.
IEEE 802.11-09/0308r12, March 2010.

[4] Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen. “A
Stochastic MIMO Radio Channel Model with Experimental Validation.” IEEE

 wlanTGaxChannel System object

3-49

Journal on Selected Areas in Communications. Vol. 20, No. 6, August 2002, pp.
1211–1226.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

Use in a MATLAB Function block is not supported.

See Also
System Objects
wlanTGacChannel | wlanTGahChannel | wlanTGnChannel

Introduced in R2018a

3 Classes — Alphabetical List

3-50

wlanTGnChannel System object
Filter signal through 802.11n multipath fading channel

Description
The wlanTGnChannel System object filters an input signal through an 802.11n™ (TGn)
multipath fading channel.

The fading processing assumes the same parameters for all NT-by-NR links of the TGn
channel. NT is the number of transmit antennas and NR is the number of receive antennas.
Each link comprises all multipaths for that link.

To filter an input signal using a TGn multipath fading channel:

1 Create the wlanTGnChannel object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects? (MATLAB).

Creation

Syntax
tgn = wlanTGnChannel
tgn = wlanTGnChannel(Name,Value)

Description
tgn = wlanTGnChannel creates a TGn fading channel System object, tgn. This object
filters a real or complex input signal through the TGn channel to obtain the channel-
impaired signal.

tgn = wlanTGnChannel(Name,Value) creates a TGn channel object, tgn, and sets
properties using one or more name-value pairs. Enclose each property name in quotes.

 wlanTGnChannel System object

3-51

For example, wlanTGnChannel('NumReceiveAntennas',2,'SampleRate',10e6)
creates a TGn channel with two receive antennas and a 10 MHz sample rate.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change
their values after calling the object. Objects lock when you call them, and the release
function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using
System Objects (MATLAB).

SampleRate — Sample rate of the input signal
20e6 (default) | real positive scalar

Sample rate of the input signal in Hz, specified as a real positive scalar.
Data Types: double

DelayProfile — Delay profile model
'Model-B' (default) | 'Model-A' | 'Model-C' | 'Model-D' | 'Model-E' | 'Model-F'

Delay profile model, specified as 'Model-A', 'Model-B', 'Model-C', 'Model-D',
'Model-E', or 'Model-F'.

The table summarizes the models properties before the bandwidth reduction factor.

Parameter Model
A B C D E F

Breakpoint distance
(m) 5 5 5 10 20 30

RMS delay spread
(ns) 0 15 30 50 100 150

Maximum delay (ns) 0 80 200 390 730 1050
Rician K-factor (dB) 0 0 0 3 6 6
Number of clusters 1 2 2 3 4 6

3 Classes — Alphabetical List

3-52

Parameter Model
A B C D E F

Number of taps 1 9 14 18 18 18

Data Types: char | string

CarrierFrequency — RF carrier frequency
5.25e9 (default) | real positive scalar

RF carrier frequency in Hz, specified as a real positive scalar.
Data Types: double

EnvironmentalSpeed — Speed of the scatterers
1.2 (default) | real positive scalar

Speed of the scatterers in km/h, specified as a real positive scalar.
Data Types: double

TransmitReceiveDistance — Distance between transmitter and receiver
3 (default) | real positive scalar

Distance between the transmitter and receiver in meters, specified as a real positive
scalar.

TransmitReceiveDistance is used to compute the path loss, and to determine whether
the channel has a line of sight (LOS) or non line of sight (NLOS) condition. The path loss
and standard deviation of shadow fading loss depend on the separation between the
transmitter and the receiver.
Data Types: double

NormalizePathGains — Normalize path gains
true (default) | false

Normalize path gains, specified as true or false. To normalize the fading processes
such that the total power of the path gains, averaged over time, is 0 dB, set this property
to true (default). When you set this property to false, the path gains are not
normalized.
Data Types: logical

 wlanTGnChannel System object

3-53

NumTransmitAntennas — Number of transmit antennas
1 (default) | 2 | 3 | 4

Number of transmit antennas, specified as a positive integer from 1 to 4.
Data Types: double

TransmitAntennaSpacing — Distance between transmit antenna elements
0.5 (default) | real positive scalar

Distance between transmit antenna elements, specified as a real positive scalar expressed
in wavelengths.

TransmitAntennaSpacing supports uniform linear arrays only.

Dependencies

This property applies only when NumTransmitAntennas is greater than 1.
Data Types: double

NumReceiveAntennas — Number of receive antennas
1 (default) | 2 | 3 | 4

Number of receive antennas, specified as a positive integer from 1 to 4.
Data Types: double

ReceiveAntennaSpacing — Distance between receive antenna elements
0.5 (default) | real positive scalar

Distance between receive antenna elements, specified as a real positive scalar expressed
in wavelengths.

ReceiveAntennaSpacing supports uniform linear arrays only.

Dependencies

This property applies only when NumReceiveAntennas is greater than 1.
Data Types: double

LargeScaleFadingEffect — Large-scale fading effects
'None' (default) | 'Pathloss' | 'Shadowing' | 'Pathloss and shadowing'

3 Classes — Alphabetical List

3-54

Large-scale fading effects applied in the channel, specified as 'None', 'Pathloss',
'Shadowing', or 'Pathloss and shadowing'.
Data Types: char | string

FluorescentEffect — Fluorescent effect
true (default) | false

Fluorescent effect, specified as true or false. To include Doppler effects from
fluorescent lighting set this property to true.

Dependencies

The FluorescentEffect property applies only when DelayProfile is 'Model-D' or
'Model-E'.
Data Types: logical

PowerLineFrequency — Power line frequency
'60Hz' (default) | '50Hz'

Power line frequency in Hz, specified as '50Hz' or '60Hz'.

The power line frequency is 60 Hz in the United States and 50 Hz in Europe.

Dependencies

This property applies only when you set FluorescentEffect to true and
DelayProfile to 'Model-D' or 'Model-E'.
Data Types: char | string

NormalizeChannelOutputs — Normalize channel outputs
true (default) | false

Normalize channel outputs by the number of receive antennas, specified as a true or
false.
Data Types: logical

RandomStream — Source of random number stream
'Global stream' (default) | 'mt19937ar with seed'

Source of random number stream, specified as 'Global stream' or 'mt19937ar with
seed'.

 wlanTGnChannel System object

3-55

If you set RandomStream to 'Global stream', the current global random number
stream generates normally distributed random numbers. In this case, the reset function
resets the filters only.

If you set RandomStream to 'mt19937ar with seed', the mt19937ar algorithm
generates normally distributed random numbers. In this case, the reset function also
reinitializes the random number stream to the value of the Seed property.
Data Types: char | string

Seed — Initial seed of mt19937ar random number stream
73 (default) | nonnegative integer

Initial seed of an mt19937ar random number stream, specified as a nonnegative integer.
The Seed property reinitializes the mt19937ar random number stream in the reset
function.

Dependencies

This property applies only when you set the RandomStream property to 'mt19937ar
with seed'.
Data Types: double

PathGainsOutputPort — Enable path gain output
false (default) | true

Enable path gain output computation, specified as true or false.
Data Types: logical

Usage

Syntax
y = tgn(x)
[y,pathGains] = tgn(x)

3 Classes — Alphabetical List

3-56

Description
y = tgn(x) filters input signal x through the TGn fading channel defined by the
wlanTGnChannel System object, tgn, and returns the result in y.

[y,pathGains] = tgn(x) also returns in pathGains the TGn channel path gains of
the underlying fading process.

This syntax applies when you set the PathGainsOutputPort property to true.

Input Arguments
x — Input signal
complex matrix

Input signal, specified as a real or complex NS-by-NT matrix, where:

• NS is the number of samples.
• NT is the number of transmit antennas and must be equal to the

NumTransmitAntennas property value.

Data Types: double
Complex Number Support: Yes

Output Arguments
y — Output signal
complex matrix

Output signal, returned as an NS-by-NR complex matrix, where:

• NS is the number of samples.
• NR is the number of receive antennas and is equal to the NumReceiveAntennas

property value.

Data Types: double

pathGains — Path gains of the fading process
complex array

 wlanTGnChannel System object

3-57

Path gains of the fading process, returned as an NS-by-NP-by-NT-by-NR complex array,
where:

• NS is the number of samples.
• NP is the number of resolvable paths, that is, the number of paths defined for the case
specified by the DelayProfile property.

• NT is the number of transmit antennas and is equal to the NumTransmitAntennas
property value.

• NR is the number of receive antennas and is equal to the NumReceiveAntennas
property value.

Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For
example, to release system resources of a System object named obj, use this syntax:

release(obj)

Specific to wlanTGnChannel
info Characteristic information about multipath fading channel

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and

input characteristics
reset Reset internal states of System object

Note reset: If the RandomStream property of the System object is set to 'Global
stream', the reset function resets the filters only. If you set RandomStream to
'mt19937ar with seed', the reset function also reinitializes the random number
stream to the value of the Seed property.

Examples

3 Classes — Alphabetical List

3-58

Transmit HT Waveform Through TGn Channel

Generate an HT waveform and pass it through a TGn SISO channel. Display the spectrum
of the resultant signal.

Set the channel bandwidth and the corresponding sample rate.

bw = 'CBW40';
fs = 40e6;

Generate an HT waveform for a 40 MHz channel.

cfg = wlanHTConfig('ChannelBandwidth',bw);
txSig = wlanWaveformGenerator(randi([0 1],1000,1),cfg);

Create a TGn SISO channel with path loss and shadowing enabled.

tgnChan = wlanTGnChannel('SampleRate',fs, ...
 'LargeScaleFadingEffect','Pathloss and shadowing');

Pass the HT waveform through the channel.

rxSig = tgnChan(txSig);

Plot the spectrum of the received waveform.

saScope = dsp.SpectrumAnalyzer('SampleRate',fs,'YLimits',[-120 -40]);
saScope(rxSig)

 wlanTGnChannel System object

3-59

Because path loss and shadowing are enabled, the mean received power across the
spectrum is approximately -60 dBm.

Transmit HT Waveform Through 4x2 MIMO Channel

Create an HT waveform having four transmit antennas and two space-time streams.

cfg = wlanHTConfig('NumTransmitAntennas',4,'NumSpaceTimeStreams',2, ...
 'SpatialMapping','Fourier');
txSig = wlanWaveformGenerator([1;0;0;1],cfg);

Create a 4x2 MIMO TGn channel and disable large-scale fading effects.

3 Classes — Alphabetical List

3-60

tgnChan = wlanTGnChannel('SampleRate',20e6, ...
 'NumTransmitAntennas',4, ...
 'NumReceiveAntennas',2, ...
 'LargeScaleFadingEffect','None');

Pass the transmit waveform through the channel.

rxSig = tgnChan(txSig);

Display the spectrum of the two received space-time streams.

saScope = dsp.SpectrumAnalyzer('SampleRate',20e6, ...
 'ShowLegend',true, ...
 'ChannelNames',{'Stream 1','Stream 2'});
saScope(rxSig)

 wlanTGnChannel System object

3-61

Recover HT Data from 2x2 MIMO Channel

Transmit an HT-LTF and an HT data field through a noisy 2x2 MIMO channel. Demodulate
the received HT-LTF to estimate the channel coefficients. Recover the HT data and
determine the number of bit errors.

Set the channel bandwidth and corresponding sample rate.

bw = 'CBW40';
fs = 40e6;

Create HT-LTF and HT data fields having two transmit antennas and two space-time
streams.

cfg = wlanHTConfig('ChannelBandwidth',bw, ...
 'NumTransmitAntennas',2,'NumSpaceTimeStreams',2);
txPSDU = randi([0 1],8*cfg.PSDULength,1);
txLTF = wlanHTLTF(cfg);
txDataSig = wlanHTData(txPSDU,cfg);

Create a 2x2 MIMO TGn channel with path loss and shadowing enabled.

tgnChan = wlanTGnChannel('SampleRate',fs, ...
 'NumTransmitAntennas',2,'NumReceiveAntennas',2, ...
 'LargeScaleFadingEffect','None');

Create AWGN channel noise, setting SNR = 15 dB.

chNoise = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)',...
 'SNR',15);

Pass the signals through the TGn channel and noise models.

rxLTF = chNoise(tgnChan(txLTF));
rxDataSig = chNoise(tgnChan(txDataSig));

Create an AWGN channel for a 40 MHz channel with a 9 dB noise figure. The noise
variance, nVar, is equal to kTBF, where k is Boltzmann's constant, T is the ambient
temperature of 290 K, B is the bandwidth (sample rate), and F is the receiver noise figure.

nVar = 10^((-228.6 + 10*log10(290) + 10*log10(fs) + 9)/10);
awgnChan = comm.AWGNChannel('NoiseMethod','Variance','Variance',nVar);

3 Classes — Alphabetical List

3-62

Pass the signals through the channel.

rxLTF = awgnChan(rxLTF);
rxDataSig = awgnChan(rxDataSig);

Demodulate the HT-LTF. Use the demodulated signal to estimate the channel coefficients.

dLTF = wlanHTLTFDemodulate(rxLTF,cfg);
chEst = wlanHTLTFChannelEstimate(dLTF,cfg);

Recover the data and determine the number of bit errors.

rxPSDU = wlanHTDataRecover(rxDataSig,chEst,nVar,cfg);
numErr = biterr(txPSDU,rxPSDU)

numErr = 0

Algorithms
The 802.11n channel object uses a filtered Gaussian noise model in which the path delays,
powers, angular spread, angles of arrival, and angles of departure are determined
empirically. The specific modeling approach is described in [1].

Multipath Parameters
The channel is modeled as several clusters, each of which represents an independent
propagation path between the transmitter and the receiver. A cluster is composed of
subpaths, or taps, which share angular spreads, angles of arrival, and angles of
departure. Delay and power level vary from tap to tap. Within the TGn model, clusters
comprise 1–7 taps. The cluster parameters for cluster 1 of model B are shown in the table.

Parameter
Tap

1 2 3 4 5
Delay (ns) 0 10 20 30 40
Power (dB) 0 –5.4 –10.8 –16.2 –21.7
Angle of arrival (°) 4.3 4.3 4.3 4.3 4.3
Receiver angular spread (°) 14.4 14.4 14.4 14.4 14.4

 wlanTGnChannel System object

3-63

Parameter
Tap

1 2 3 4 5
Angle of departure (°) 225.1 225.1 225.1 225.1 225.1
Transmitter angular spread (°) 14.4 14.4 14.4 14.4 14.4

For each model, the first tap has a line of sight (LOS) between the transmitter and
receiver, whereas all other taps are non line of sight (NLOS). As a result, the first tap
exhibits Rician behavior, while the others exhibit Rayleigh behavior. The Rician K-factor is
the ratio between the power in the first tap and the power in the other taps. A large K-
factor indicates a strong LOS component.

The angles of arrival and departure for each cluster are randomly selected from a uniform
distribution over [0, 2π]. These angles are independent of each other and are fixed for all
channel realizations. By fixing the values, the transmit and receive correlation matrices
are computed only once. Angular spread values were indirectly determined from
empirical data and fall within the 20° to 40° range.

Path Loss and Shadowing
The path loss exponent and the standard deviation of the shadow fading loss characterize
each model. The two parameters depend on the presence of a LOS between the
transmitter and receiver. For paths with a transmitter-to-receiver distance, d, less that the
breakpoint distance, dBP, the LOS parameters apply. For d >dBP, the NLOS parameters
apply. The table summarizes the path loss and shadow fading parameters.

Parameter Model
A B C D E F

Breakpoint distance, dBP (m) 5 5 5 10 20 30
Path loss exponent for d ≤ dBP 2 2 2 2 2 2
Path loss exponent for d >dBP 3.5 3.5 3.5 3.5 3.5 3.5
Shadow fading σ (dB) for d ≤
dBP 3 3 3 3 3 3
Shadow fading σ (dB) for d
>dBP 4 4 5 5 6 6

3 Classes — Alphabetical List

3-64

Doppler Effects
In indoor environments, the transmitter and receiver are stationary, and Doppler effects
arise from people moving between them. The TGn model employs a bell-shaped Doppler
spectrum in which the environmental speed, ν0, is 1.2 km/h by default (it is specified by
the EnvironmentalSpeed property). The Doppler spread, fd, is calculated as fd = ν0/λ,
where λ is the carrier wavelength.

The channel sampling rate, Fs, must be lower than the input sampling rate to avoid
aliasing. It is calculated as:

Fs= (ν0×Fc)/(300×c)

where Fc is the carrier frequency, specified by the CarrierFrequency property, c is the
speed of light and ν0 is defined in m/s.

In addition to basic Doppler effects resulting from environmental motion, fluorescent
lights introduce signal fading at twice the power line frequency. The effects show up as
frequency-selective amplitude modulation. Again, to avoid aliasing, the Nyquist frequency
of the first interpolation factor must be greater than the highest harmonic.

The effect is included in models D and E. To disable this effect, set the
FluorescentEffect property to false.

References
[1] Erceg, V., L. Schumacher, P. Kyritsi, et al. TGn Channel Models. Version 4. IEEE

802.11-03/940r4, May 2004.

[2] Kermoal, J. P., L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen, “A
Stochastic MIMO Radio Channel Model with Experimental Validation”. IEEE
Journal on Selected Areas in Communications., Vol. 20, No. 6, August 2002, pp.
1211–1226.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 wlanTGnChannel System object

3-65

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

Use in a MATLAB Function block is not supported.

See Also
System Objects
wlanTGacChannel | wlanTGahChannel | wlanTGaxChannel

Introduced in R2015b

3 Classes — Alphabetical List

3-66

info
Characteristic information about multipath fading channel

Syntax
S = info(chan)

Description
S = info(chan) returns a structure, S, containing characteristic information about the
corresponding channel object, chan.

Examples

Characteristic Information of a TGah channel

Return the characteristic information of a TGah channel.

Create the TGah channel System Object. Specify a delay profile defined by the model E,
path loss, 4 MHz of channel bandwidth and a 2x2 MIMO channel.

tgah = wlanTGahChannel;
tgah.DelayProfile = 'Model-E';
tgah.LargeScaleFadingEffect = 'Pathloss';
tgah.ChannelBandwidth = 'CBW4';
tgah.NumTransmitAntennas = 2;
tgah.NumReceiveAntennas = 2;

Return the delay by the channel filtering, the delay and average gain of each discrete
path, and the path loss.

S = info(tgah)

S = struct with fields:
 ChannelFilterDelay: 7

 info

3-67

 ChannelFilterCoefficients: [18x17 double]
 PathDelays: [1x18 double]
 AveragePathGains: [1x18 double]
 Pathloss: 41.2126

Input Arguments
chan — Channel
wlanTGnChannel object | wlanTGacChannel object | wlanTGahChannel object |
wlanTGaxChannel object

Channel, specified as a wlanTGnChannel, wlanTGacChannel, wlanTGahChannel, or
wlanTGaxChannel System object.

Output Arguments
S — Characteristic information about the channel
structure

Characteristic information about the channel, returned as a structure. It contains the
following fields:

• ChannelFilterDelay: Filter delay introduced by the implementation (samples)
• PathDelays: Delay of each discrete path (seconds)
• AveragePathGains: Average gain of each discrete path (dB)
• Pathloss: Path loss between the transmitter and receiver (dB)

See Also
wlanTGacChannel | wlanTGahChannel | wlanTGaxChannel | wlanTGnChannel

Introduced in R2015b

3 Classes — Alphabetical List

3-68

